A378250 Perfect-powers x > 1 such that it is not possible to choose a prime y and a perfect-power z satisfying x > y > z.
4, 8, 16, 25, 32, 49, 64, 81, 100, 121, 128, 144, 169, 196, 216, 225, 243, 256, 289, 324, 343, 361, 400, 441, 484, 512, 529, 576, 625, 676, 729, 784, 841, 900, 961, 1000, 1024, 1089, 1156, 1225, 1296, 1331, 1369, 1444, 1521, 1600, 1681, 1728, 1764, 1849, 1936
Offset: 1
Keywords
Examples
The first number line below shows the perfect-powers. The second shows the primes. The third is a(n). -1-----4-------8-9------------16----------------25--27--------32------36---- ===2=3===5===7======11==13======17==19======23==========29==31==========37== 4 8 16 25 32 The terms together with their prime indices begin: 4: {1,1} 8: {1,1,1} 16: {1,1,1,1} 25: {3,3} 32: {1,1,1,1,1} 49: {4,4} 64: {1,1,1,1,1,1} 81: {2,2,2,2} 100: {1,1,3,3} 121: {5,5} 128: {1,1,1,1,1,1,1} 144: {1,1,1,1,2,2} 169: {6,6} 196: {1,1,4,4} 216: {1,1,1,2,2,2} 225: {2,2,3,3} 243: {2,2,2,2,2} 256: {1,1,1,1,1,1,1,1}
Crossrefs
Programs
-
Mathematica
radQ[n_]:=n>1&&GCD@@Last/@FactorInteger[n]==1; Union[Table[NestWhile[#+1&,Prime[n],radQ[#]&],{n,100}]]
Comments