This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A378275 #8 Jan 15 2025 08:40:28 %S A378275 3,4,7,11,19,23,59,83,167,227,491,659,839,983,1019,1091,1319,1459, %T A378275 1523,1847,2179,2503,2963,3719,3767,4519,4871,4919,5059,6563,9239, %U A378275 9419,10883,12107,12539,14891,15383,20071,20747,23819,25219,26759,33851,35591,37379,45191 %N A378275 Numbers m which satisfy the equation: (m - floor((m - k)/k)) mod k = 1 (1 <= k <= m) only for k = 2 and m - 1. %C A378275 Every term greater than 4 has the form 4*t + 3. %C A378275 Let b(z) be the number of elements of this sequence <= z: %C A378275 ------------- %C A378275 z | b(z) %C A378275 ------------- %C A378275 10^2 | 8 %C A378275 10^3 | 14 %C A378275 10^4 | 32 %C A378275 10^5 | 55 %C A378275 10^6 | 125 %C A378275 10^7 | 347 %C A378275 10^8 | 950 %C A378275 ------------- %C A378275 Every term greater than 4 is prime. %H A378275 Jinyuan Wang, <a href="/A378275/b378275.txt">Table of n, a(n) for n = 1..3000</a> %e A378275 Let T(i,j) be the triangle read by rows: T(i,j) = (i - floor((i - j)/j)) mod j for 1 <= j <= i. The triangle begins: %e A378275 i\j | 1 2 3 4 5 6 7 8 9 ... %e A378275 -----+------------------ %e A378275 1 | 0 %e A378275 2 | 0 0 %e A378275 3 | 0 1 0 %e A378275 4 | 0 1 1 0 %e A378275 5 | 0 0 2 1 0 %e A378275 6 | 0 0 2 2 1 0 %e A378275 7 | 0 1 0 3 2 1 0 %e A378275 8 | 0 1 1 3 3 2 1 0 %e A378275 9 | 0 0 1 0 4 3 2 1 0 %e A378275 ... %e A378275 The j-th column has period j^2, r-th element of this period has the form (r - 1 - floor((r - 1)/j)) mod j (1 <= r <= j^2). The period of j-th column consists of the sequence (0,1,2,...,j-1) and its consecutive j-1 right rotations (moving rightmost element to the left end). %e A378275 7 is in this sequence because the only k's satisfying the equation (7 - floor((7 - k)/k)) mod k = 1 are 2 and (7-1). %o A378275 (Maxima) %o A378275 (f(i, j):=mod((i-floor((i-j)/j)), j), %o A378275 (n:3, for t:7 thru 100000 step 4 do %o A378275 (for k:3 while f(t, k)#1 and k<ceiling(t/2) do %o A378275 (if k=ceiling(t/2)-1 then (print(n, "", t), n:n+1))))); %o A378275 (PARI) is(m) = if(m%4==3, for(k=3, m\2, if((m-m\k)%k==0, return(0))); 1, m==4); \\ _Jinyuan Wang_, Jan 14 2025 %Y A378275 Cf. A000040, A048158, A051731, A375007, A375595. %K A378275 nonn %O A378275 1,1 %A A378275 _Lechoslaw Ratajczak_, Nov 21 2024