This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A378277 #5 Dec 08 2024 17:12:17 %S A378277 1,2,2,2,3,6,2,3,10,15,2,3,10,24,40,2,3,10,24,65,104,2,3,10,24,65,168, %T A378277 273,2,3,10,24,65,168,442,714,2,3,10,24,65,168,442,1155,1870,2,3,10, %U A378277 24,65,168,442,1155,3026,4895,2,3,10,24,65,168,442,1155,3026,7920,12816 %N A378277 Denominators in a harmonic triangle, based on products of Fibonacci numbers. %C A378277 The harmonic triangle uses the terms of this sequence as denominators, numerators = 1. %C A378277 The inverse of the harmonic triangle has entries -(Fibonacci(k+1))^2 for 1<=k<n (subdiagonals) and Fibonacci(n) * Fibonacci(n+1) (main diagonal). %C A378277 Row sums of the harmonic triangle are 1. %C A378277 Conjecture: Alt. row sums of the harmonic triangle are Fibonacci(n-2) / Fibonacci(n+1), where Fibonacci(-1) = 1. %F A378277 T(n, k) = Fibonacci(n) * Fibonacci(n+1) if k = n, and Fibonacci(k) * Fibonacci(k+2) if 1 <= k < n. %F A378277 Row sums are A110035(n) - 1 = -A110034(n+1). %F A378277 G.f.: A(t, x) = x*t*(1 + t - x*t^2) / ((1 - t) * (1 + x*t) * (1 - 3*x*t + x^2*t^2)). %e A378277 Triangle T(n, k) for 1 <= k <= n starts: %e A378277 n\ k : 1 2 3 4 5 6 7 8 9 10 11 %e A378277 =========================================================== %e A378277 1 : 1 %e A378277 2 : 2 2 %e A378277 3 : 2 3 6 %e A378277 4 : 2 3 10 15 %e A378277 5 : 2 3 10 24 40 %e A378277 6 : 2 3 10 24 65 104 %e A378277 7 : 2 3 10 24 65 168 273 %e A378277 8 : 2 3 10 24 65 168 442 714 %e A378277 9 : 2 3 10 24 65 168 442 1155 1870 %e A378277 10 : 2 3 10 24 65 168 442 1155 3026 4895 %e A378277 11 : 2 3 10 24 65 168 442 1155 3026 7920 12816 %e A378277 etc. %o A378277 (PARI) T(n,k)=if(k==n,Fibonacci(n)*Fibonacci(n+1),Fibonacci(k)*Fibonacci(k+2)) %Y A378277 Cf. A000045, A110034, A110035, A001654 (main diagonal), A059929 (subdiagonals). %K A378277 nonn,easy,tabl,frac %O A378277 1,2 %A A378277 _Werner Schulte_, Nov 21 2024