A378286
a(n) = number of terms in row n of the array A378282.
Original entry on oeis.org
1, 1, 1, 2, 2, 3, 4, 5, 7, 11, 16, 23, 35, 51, 75, 113, 168, 249, 374, 560, 840, 1262, 1896, 2844, 4270, 6405, 9607, 14421, 21633, 32449, 48676, 73027, 109546, 164334, 246528, 369784, 554686, 832046, 1248073, 1872168, 2808326, 4212710, 6319089, 9478842
Offset: 1
First eleven rows of array A378282:
1
1
2
1 1
1 2
2 1 1
1 1 2 1
1 2 1 1 2
2 1 1 2 1 2 2
1 1 2 1 2 2 1 2 2 1 1
1 2 1 1 2 1 1 2 2 1 2 2 1 1 2 2 1
a(11) = 16 = number of terms in row 11.
-
invRE[seq_, k_] := Flatten[Map[ConstantArray[#[[2]], #[[1]]] &,
Partition[Riffle[seq, {k, 2 - Mod[k + 1, 2]}, {2, -1, 2}], 2]]];
row1 = {1}; rows = {row1};
col = PadRight[{}, 30, {1, 1, 2}](*112112112112112112...*);
Do[AppendTo[rows, invRE[Last[rows], col[[n]]]], {n, 2, Length[col]}]
rows // ColumnForm; (* A378282 *)
Map[Length, rows] (* this sequence *)
(* Peter J. C. Moses, Nov 21 2024 *)
A378303
Irregular triangular T: (row 1) = (1); (row n+1) = inverse runlength sequence of row n, starting with 1 if r = 3k for some k, and 2 otherwise. See Comments.
Original entry on oeis.org
1, 2, 2, 2, 1, 1, 2, 2, 2, 1, 2, 2, 1, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2
Offset: 1
First nine rows:
1
2
2, 2
1, 1, 2, 2
2, 1, 2, 2, 1, 1
2, 2, 1, 2, 2, 1, 1, 2, 1
1, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1
2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1
2, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2
(row 9) = (2,2,1,2,2,1,...) has runlength sequence (2,1,2,2,...) = (row 8).
-
invRE[seq_, k_] := Flatten[Map[ConstantArray[#[[2]], #[[1]]] &,
Partition[Riffle[seq, {k, 2 - Mod[k + 1, 2]}, {2, -1, 2}], 2]]];
row1 = {1}; rows = {row1};
col = PadRight[{}, 18, {1, 2, 2}]
Do[AppendTo[rows, invRE[Last[rows], col[[n]]]], {n, 2, Length[col]}]
rows // ColumnForm (* array *)
Flatten[rows] (* sequence *)
(* Peter J. C. Moses, Nov 21 2024 *)
A378283
Unique sequence s starting with 1,1,2,1 such that if r(r(r(s) = s and r(s) != s and r(r(s) != s, where r(#) denotes the runlength sequence of a sequence #.
Original entry on oeis.org
1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 2, 1, 1
Offset: 1
-
z = 18;
invRE[seq_, k_] := Flatten[Map[ConstantArray[#[[2]], #[[1]]] &,
Partition[Riffle[seq, {k, 2 - Mod[k + 1, 2]}, {2, -1, 2}], 2]]];
row1 = {1}; rows = {row1};
col = PadRight[{}, z, {1, 1, 2}]
Do[AppendTo[rows, invRE[Last[rows], col[[n]]]], {n, 2, Length[col]}]
rows // ColumnForm
Flatten[rows] (* A378282 *)
rows[[z - 2]]; (* A378283 *)
rows[[z - 1]]; (* A378284 *)
rows[[z]]; (* A378285 *)
Map[Length, rows] (* A378286 *)
(* Peter J. C. Moses, Nov 21 2024 *)
A378284
Unique sequence s starting with 1,2,1 such that if r(r(r(s) = s and r(s) != s and r(r(s) != s, where r(#) denotes the runlength sequence of a sequence #.
Original entry on oeis.org
1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2
Offset: 1
-
z = 18;
invRE[seq_, k_] := Flatten[Map[ConstantArray[#[[2]], #[[1]]] &,
Partition[Riffle[seq, {k, 2 - Mod[k + 1, 2]}, {2, -1, 2}], 2]]];
row1 = {1}; rows = {row1};
col = PadRight[{}, z, {1, 1, 2}]
Do[AppendTo[rows, invRE[Last[rows], col[[n]]]], {n, 2, Length[col]}]
rows // ColumnForm
Flatten[rows] (* A378282 *)
rows[[z - 2]]; (* A378283 *)
rows[[z - 1]]; (* A378284 *)
rows[[z]]; (* A378285 *)
Map[Length, rows] (* A378286 *)
(* Peter J. C. Moses, Nov 21 2024 *)
A378285
Unique sequence s starting with 2,1 such that if r(r(r(s))) = s and r(s) != s and r(r(s)) != s, where r(#) denotes the runlength sequence of a sequence #.
Original entry on oeis.org
2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1
Offset: 1
-
z = 18;
invRE[seq_, k_] := Flatten[Map[ConstantArray[#[[2]], #[[1]]] &,
Partition[Riffle[seq, {k, 2 - Mod[k + 1, 2]}, {2, -1, 2}], 2]]];
row1 = {1}; rows = {row1};
col = PadRight[{}, z, {1, 1, 2}]
Do[AppendTo[rows, invRE[Last[rows], col[[n]]]], {n, 2, Length[col]}]
rows // ColumnForm
Flatten[rows] (* A378282 *)
rows[[z - 2]]; (* A378283 *)
rows[[z - 1]]; (* A378284 *)
rows[[z]]; (* A378285 *)
Map[Length, rows] (* A378286 *)
(* Peter J. C. Moses, Nov 21 2024 *)
A378304
Unique sequence s starting with 1,1,2,2 such that if r(r(r(s))) = s and r(s) != s and r(r(s)) != s, where r(#) denotes the runlength sequence of a sequence #.
Original entry on oeis.org
1, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1
Offset: 1
-
z = 18;
invRE[seq_, k_] := Flatten[Map[ConstantArray[#[[2]], #[[1]]] &,
Partition[Riffle[seq, {k, 2 - Mod[k + 1, 2]}, {2, -1, 2}], 2]]];
row1 = {1}; rows = {row1};
col = PadRight[{}, z, {1, 2, 2}]
Do[AppendTo[rows, invRE[Last[rows], col[[n]]]], {n, 2, Length[col]}]
rows // ColumnForm (* A378303 *)
rows[[z - 2]]; (* A378304 *)
rows[[z - 1]]; (* A378305 *)
rows[[z]]; (* A378306 *)
Map[Length, rows] (* A378307 *)
(* Peter J. C. Moses, Nov 21 2024 *)
A378305
Unique sequence s starting with 2,1,2 such that if r(r(r(s))) = s and r(s) != s and r(r(s)) != s, where r(#) denotes the runlength sequence of a sequence #.
Original entry on oeis.org
2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1
Offset: 1
-
z = 18;
invRE[seq_, k_] := Flatten[Map[ConstantArray[#[[2]], #[[1]]] &,
Partition[Riffle[seq, {k, 2 - Mod[k + 1, 2]}, {2, -1, 2}], 2]]];
row1 = {1}; rows = {row1};
col = PadRight[{}, z, {1, 2, 2}]
Do[AppendTo[rows, invRE[Last[rows], col[[n]]]], {n, 2, Length[col]}]
rows // ColumnForm (* A378303 *)
rows[[z - 2]]; (* A378304 *)
rows[[z - 1]]; (* A378305 *)
rows[[z]]; (* A378306 *)
Map[Length, rows] (* A378307 *)
(* Peter J. C. Moses, Nov 21 2024 *)
A378306
Unique sequence s starting with 2,2 such that if r(r(r(s))) = s and r(s) != s and r(r(s)) != s, where r(#) denotes the runlength sequence of a sequence #.
Original entry on oeis.org
2, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1
Offset: 1
-
z = 18;
invRE[seq_, k_] := Flatten[Map[ConstantArray[#[[2]], #[[1]]] &,
Partition[Riffle[seq, {k, 2 - Mod[k + 1, 2]}, {2, -1, 2}], 2]]];
row1 = {1}; rows = {row1};
col = PadRight[{}, z, {1, 2, 2}]
Do[AppendTo[rows, invRE[Last[rows], col[[n]]]], {n, 2, Length[col]}]
rows // ColumnForm (* A378303 *)
rows[[z - 2]]; (* A378304 *)
rows[[z - 1]]; (* A378305 *)
rows[[z]]; (* A378306 *)
Map[Length, rows] (* A378307 *)
(* Peter J. C. Moses, Nov 21 2024 *)
A378396
Rectangular array read by descending antidiagonals: (row 1) = u, and for n >= 2, (row n) = u-inverse runlength sequence of u, where u = 1 + A010060. See Comments.
Original entry on oeis.org
1, 2, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 2, 2, 2, 1, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 2, 2, 2, 2
Offset: 1
The corner of the array begins:
1 2 2 1 2 1 1 2 2 1 1 2 1 2 2 1 2 1 1 2 1
2 1 1 2 2 1 2 2 1 2 1 1 2 2 1 2 1 1 2 1 1
2 2 1 2 1 1 2 2 1 2 2 1 1 2 1 1 2 1 2 2 1
1 1 2 2 1 2 2 1 2 1 1 2 2 1 2 2 1 1 2 1 2
2 1 2 2 1 1 2 1 1 2 2 1 2 2 1 2 1 1 2 2 1
1 1 2 1 1 2 2 1 2 1 1 2 1 2 2 1 1 2 1 1 2
1 2 1 1 2 1 2 2 1 1 2 1 1 2 1 2 2 1 2 2 1
2 1 1 2 1 2 2 1 2 2 1 1 2 1 2 2 1 2 1 1 2
2 2 1 2 1 1 2 1 1 2 2 1 2 2 1 1 2 1 2 2 1
1 1 2 2 1 2 2 1 2 1 1 2 1 2 2 1 1 2 1 1 2
1 2 1 1 2 2 1 2 2 1 1 2 1 1 2 1 2 2 1 2 2
2 1 1 2 1 2 2 1 1 2 1 1 2 2 1 2 1 1 2 1 2
...
-
invRE[seq_, k_] := Flatten[Map[ConstantArray[#[[2]], #[[1]]] &,
Partition[Riffle[seq, {k, 2 - Mod[k + 1, 2]}, {2, -1, 2}], 2]]];
row1 = 1 + ThueMorse[Range[0, 20]] (* 1 + A010060 *);
rows = {row1}; col = Take[row1, 12];
Do[AppendTo[rows, Take[invRE[Last[rows], col[[n]]], Length[row1]]], {n, 2, Length[col]}]
rows // ColumnForm (* array *)
w[n_, k_] := rows[[n]][[k]]; Table[w[n - k + 1, k], {n, 12}, {k, n, 1, -1}] // Flatten (* sequence *)
(* Peter J. C. Moses, Nov 20 2024 *)
A378397
Rectangular array read by descending antidiagonals: (row 1) = u, and for n >= 2, (row n) = u-inverse runlength sequence of u, where u = A003842 (an infinite Fibonacci word). See Comments.
Original entry on oeis.org
1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1
Offset: 1
The corner of the array begins:
1 2 1 1 2 1 2 1 1 2 1 1 2 1 2 1 1 2 1 2 1
2 1 1 2 1 2 2 1 2 2 1 2 1 1 2 1 2 2 1 2 2
1 1 2 1 2 2 1 2 2 1 1 2 1 1 2 2 1 2 2 1 2
1 2 1 1 2 1 1 2 2 1 2 2 1 1 2 1 2 2 1 2 1
2 1 1 2 1 2 2 1 2 1 1 2 2 1 2 2 1 1 2 1 2
1 1 2 1 2 2 1 2 2 1 1 2 1 1 2 1 2 2 1 1 2
2 1 2 2 1 2 2 1 1 2 1 1 2 2 1 2 1 1 2 1 2
1 1 2 1 1 2 2 1 2 2 1 1 2 1 2 2 1 2 1 1 2
1 2 1 1 2 1 2 2 1 1 2 1 1 2 2 1 2 1 1 2 1
2 1 1 2 1 2 2 1 2 2 1 1 2 1 2 2 1 2 1 1 2
1 1 2 1 2 2 1 2 2 1 1 2 1 1 2 2 1 2 1 1 2
1 2 1 1 2 1 1 2 2 1 2 2 1 1 2 1 2 2 1 2 1
-
invRE[seq_, k_] := Flatten[Map[ConstantArray[#[[2]], #[[1]]] &,
Partition[Riffle[seq, {k, 2 - Mod[k + 1, 2]}, {2, -1, 2}], 2]]];
row1 = SubstitutionSystem[{1 -> {1, 2}, 2 -> {1}}, {1}, {7}][[1]] (* A003842 *);
rows = {row1}; col = Take[row1, 12];
Do[AppendTo[rows, Take[invRE[Last[rows], col[[n]]], Length[row1]]], {n, 2, Length[col]}]
rows // ColumnForm (* array *)
w[n_, k_] := rows[[n]][[k]]; Table[w[n - k + 1, k], {n, 12}, {k, n, 1, -1}] // Flatten (* sequence *)
(* Peter J. C. Moses, Nov 20 2024 *)
Showing 1-10 of 15 results.
Comments