A378283 Unique sequence s starting with 1,1,2,1 such that if r(r(r(s) = s and r(s) != s and r(r(s) != s, where r(#) denotes the runlength sequence of a sequence #.
1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 2, 1, 1
Offset: 1
Keywords
Programs
-
Mathematica
z = 18; invRE[seq_, k_] := Flatten[Map[ConstantArray[#[[2]], #[[1]]] &, Partition[Riffle[seq, {k, 2 - Mod[k + 1, 2]}, {2, -1, 2}], 2]]]; row1 = {1}; rows = {row1}; col = PadRight[{}, z, {1, 1, 2}] Do[AppendTo[rows, invRE[Last[rows], col[[n]]]], {n, 2, Length[col]}] rows // ColumnForm Flatten[rows] (* A378282 *) rows[[z - 2]]; (* A378283 *) rows[[z - 1]]; (* A378284 *) rows[[z]]; (* A378285 *) Map[Length, rows] (* A378286 *) (* Peter J. C. Moses, Nov 21 2024 *)
Comments