A378288 Array read by antidiagonals: row k consists of the positive integers j for which the concatenation of 2^k - 1 and 2^j - 1 is prime.
1, 2, 1, 3, 3, 1, 5, 5, 2, 1, 6, 9, 7, 3, 1, 9, 15, 10, 5, 2, 1, 13, 27, 11, 9, 3, 7, 3, 18, 45, 13, 15, 6, 17, 6, 1, 19, 59, 14, 45, 9, 41, 13, 3, 2, 26, 211, 25, 61, 11, 101, 125, 7, 5, 13, 43, 303, 62, 65, 13, 157, 150, 9, 11, 27, 3, 46, 425, 70, 227, 23, 367, 195, 11, 14, 43, 14, 11
Offset: 1
Examples
The array starts 1 2 3 5 6 9 13 18 ... 1 3 5 9 15 27 45 59 ... 1 2 7 10 11 13 14 25 ... 1 3 5 9 15 45 61 65 ... 1 2 3 6 9 11 13 23 ... 1 7 17 41 101 157 367 571 ... 3 6 13 125 150 195 634 1282 ... 1 3 7 9 11 23 27 39 ... a(3,4) = 10 is a term in row 3 because the concatenation of 2^3 - 1 = 7 and 2^10 - 1 = 1023 is 71023, which is prime.
Programs
-
Maple
tcat:= (a,b) -> 10^(1+ilog10(b))*a+b: N:= 8: # for the top left N x N array M:= Matrix(N, N): for i from 1 to N do count:= 0: x:= 2^i-1; for j from 1 by `if`(i::even,2,1) while count + i < N do if j mod 4 = 0 or igcd(i,j) > 1 then next fi; if isprime(tcat(x,2^j-1)) then count:= count+1; M[i,count]:= j fi; od; od: M; seq(seq(M[k,1+d-k], k=1..d), d=1..N-1);
Comments