This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A378289 #16 Nov 22 2024 08:30:21 %S A378289 1,1,0,1,1,0,1,2,3,0,1,3,7,10,0,1,4,12,26,38,0,1,5,18,49,105,154,0,1, %T A378289 6,25,80,210,444,654,0,1,7,33,120,363,927,1944,2871,0,1,8,42,170,575, %U A378289 1672,4191,8734,12925,0,1,9,52,231,858,2761,7810,19305,40040,59345,0 %N A378289 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,0) = 0^n and T(n,k) = k * Sum_{r=0..n} binomial(n+r+k,r) * binomial(r,n-r)/(n+r+k) for k > 0. %F A378289 G.f. A_k(x) of column k satisfies A_k(x) = ( 1 + x * A_k(x)^(2/k) * (1 + x * A_k(x)^(1/k)) )^k for k > 0. %F A378289 G.f. of column k: B(x)^k where B(x) is the g.f. of A001002. %F A378289 B(x)^k = B(x)^(k-1) + x * B(x)^(k+1) + x^2 * B(x)^(k+2). So T(n,k) = T(n,k-1) + T(n-1,k+1) + T(n-2,k+2) for n > 1. %e A378289 Square array begins: %e A378289 1, 1, 1, 1, 1, 1, 1, ... %e A378289 0, 1, 2, 3, 4, 5, 6, ... %e A378289 0, 3, 7, 12, 18, 25, 33, ... %e A378289 0, 10, 26, 49, 80, 120, 170, ... %e A378289 0, 38, 105, 210, 363, 575, 858, ... %e A378289 0, 154, 444, 927, 1672, 2761, 4290, ... %e A378289 0, 654, 1944, 4191, 7810, 13325, 21385, ... %o A378289 (PARI) T(n, k, t=2, u=1) = if(k==0, 0^n, k*sum(r=0, n, binomial(t*r+u*(n-r)+k, r)*binomial(r, n-r)/(t*r+u*(n-r)+k))); %o A378289 matrix(7, 7, n, k, T(n-1, k-1)) %Y A378289 Columns k=0..3 give A000007, A001002, A052706(n+2), A052703(n+3). %Y A378289 Cf. A009766, A026300, A378290, A378291, A378292. %K A378289 nonn,tabl %O A378289 0,8 %A A378289 _Seiichi Manyama_, Nov 21 2024