This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A378290 #13 Nov 22 2024 08:31:00 %S A378290 1,1,0,1,1,0,1,2,4,0,1,3,9,19,0,1,4,15,46,104,0,1,5,22,82,262,614,0,1, %T A378290 6,30,128,486,1588,3816,0,1,7,39,185,789,3027,10053,24595,0,1,8,49, %U A378290 254,1185,5052,19543,65686,162896,0,1,9,60,336,1689,7801,33290,129606,439658,1101922,0 %N A378290 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,0) = 0^n and T(n,k) = k * Sum_{r=0..n} binomial(n+2*r+k,r) * binomial(r,n-r)/(n+2*r+k) for k > 0. %F A378290 G.f. A_k(x) of column k satisfies A_k(x) = ( 1 + x * A_k(x)^(3/k) * (1 + x * A_k(x)^(1/k)) )^k for k > 0. %F A378290 G.f. of column k: B(x)^k where B(x) is the g.f. of A186997. %F A378290 B(x)^k = B(x)^(k-1) + x * B(x)^(k+2) + x^2 * B(x)^(k+3). So T(n,k) = T(n,k-1) + T(n-1,k+2) + T(n-2,k+3) for n > 1. %e A378290 Square array begins: %e A378290 1, 1, 1, 1, 1, 1, 1, ... %e A378290 0, 1, 2, 3, 4, 5, 6, ... %e A378290 0, 4, 9, 15, 22, 30, 39, ... %e A378290 0, 19, 46, 82, 128, 185, 254, ... %e A378290 0, 104, 262, 486, 789, 1185, 1689, ... %e A378290 0, 614, 1588, 3027, 5052, 7801, 11430, ... %e A378290 0, 3816, 10053, 19543, 33290, 52490, 78552, ... %o A378290 (PARI) T(n, k, t=3, u=1) = if(k==0, 0^n, k*sum(r=0, n, binomial(t*r+u*(n-r)+k, r)*binomial(r, n-r)/(t*r+u*(n-r)+k))); %o A378290 matrix(7, 7, n, k, T(n-1, k-1)) %Y A378290 Columns k=0..2 give A000007, A186997, A218045(n+2). %Y A378290 Cf. A009766, A026300, A378289, A378291, A378292. %K A378290 nonn,tabl %O A378290 0,8 %A A378290 _Seiichi Manyama_, Nov 21 2024