This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A378292 #13 Nov 22 2024 08:31:06 %S A378292 1,1,0,1,1,0,1,2,3,0,1,3,7,11,0,1,4,12,28,46,0,1,5,18,52,123,207,0,1, %T A378292 6,25,84,240,572,979,0,1,7,33,125,407,1155,2769,4797,0,1,8,42,176,635, %U A378292 2028,5733,13806,24138,0,1,9,52,238,936,3276,10332,29136,70414,123998,0 %N A378292 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,0) = 0^n and T(n,k) = k * Sum_{r=0..n} binomial(2*n+k,r) * binomial(r,n-r)/(2*n+k) for k > 0. %F A378292 G.f. A_k(x) of column k satisfies A_k(x) = ( 1 + x * A_k(x)^(2/k) * (1 + x * A_k(x)^(2/k)) )^k for k > 0. %F A378292 G.f. of column k: B(x)^k where B(x) is the g.f. of A006605. %F A378292 B(x)^k = B(x)^(k-1) + x * B(x)^(k+1) + x^2 * B(x)^(k+3). So T(n,k) = T(n,k-1) + T(n-1,k+1) + T(n-2,k+3) for n > 1. %e A378292 Square array begins: %e A378292 1, 1, 1, 1, 1, 1, 1, ... %e A378292 0, 1, 2, 3, 4, 5, 6, ... %e A378292 0, 3, 7, 12, 18, 25, 33, ... %e A378292 0, 11, 28, 52, 84, 125, 176, ... %e A378292 0, 46, 123, 240, 407, 635, 936, ... %e A378292 0, 207, 572, 1155, 2028, 3276, 4998, ... %e A378292 0, 979, 2769, 5733, 10332, 17140, 26860, ... %o A378292 (PARI) T(n, k, t=2, u=2) = if(k==0, 0^n, k*sum(r=0, n, binomial(t*r+u*(n-r)+k, r)*binomial(r, n-r)/(t*r+u*(n-r)+k))); %o A378292 matrix(7, 7, n, k, T(n-1, k-1)) %Y A378292 Columns k=0..2 give A000007, A006605, A143927. %Y A378292 Cf. A009766, A026300, A378289, A378290, A378291. %K A378292 nonn,tabl %O A378292 0,8 %A A378292 _Seiichi Manyama_, Nov 21 2024