This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A378318 #15 Nov 24 2024 09:26:46 %S A378318 1,1,0,1,2,0,1,4,6,0,1,6,16,30,0,1,8,30,84,170,0,1,10,48,170,496,1050, %T A378318 0,1,12,70,296,1050,3140,6846,0,1,14,96,470,1920,6846,20832,46374,0,1, %U A378318 16,126,700,3210,12936,46374,142932,323154,0,1,18,160,994,5040,22402,89712,323154,1005856,2301618,0 %N A378318 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,0) = 0^n and T(n,k) = k * Sum_{r=0..n} binomial(n,r) * binomial(3*r+k,n)/(3*r+k) for k > 0. %F A378318 G.f. A_k(x) of column k satisfies A_k(x) = ( 1 + x + x * A_k(x)^(3/k) )^k for k > 0. %F A378318 G.f. of column k: B(x)^k where B(x) is the g.f. of A366266. %F A378318 B(x)^k = B(x)^(k-1) + x * B(x)^(k-1) + x * B(x)^(k+2). So T(n,k) = T(n,k-1) + T(n-1,k-1) + T(n-1,k+2) for n > 0. %e A378318 Square array begins: %e A378318 1, 1, 1, 1, 1, 1, 1, ... %e A378318 0, 2, 4, 6, 8, 10, 12, ... %e A378318 0, 6, 16, 30, 48, 70, 96, ... %e A378318 0, 30, 84, 170, 296, 470, 700, ... %e A378318 0, 170, 496, 1050, 1920, 3210, 5040, ... %e A378318 0, 1050, 3140, 6846, 12936, 22402, 36492, ... %e A378318 0, 6846, 20832, 46374, 89712, 159390, 266800, ... %o A378318 (PARI) T(n, k, t=0, u=3) = if(k==0, 0^n, k*sum(r=0, n, binomial(n, r)*binomial(t*n+u*r+k, n)/(t*n+u*r+k))); %o A378318 matrix(7, 7, n, k, T(n-1, k-1)) %Y A378318 Columns k=0..1 give A000007, A366266. %Y A378318 Main diagonal gives A378378. %Y A378318 Cf. A266213, A378317. %Y A378318 Cf. A378323. %K A378318 nonn,tabl %O A378318 0,5 %A A378318 _Seiichi Manyama_, Nov 23 2024