This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A378351 #5 Nov 28 2024 11:10:54 %S A378351 1,0,6,7,2,9,4,1,8,7,3,9,8,3,5,4,6,7,0,5,1,5,0,0,0,8,9,2,2,4,9,0,1,6, %T A378351 0,5,6,4,5,9,0,1,0,4,2,3,7,7,1,5,4,7,1,2,6,4,4,7,5,3,7,1,0,6,3,0,4,9, %U A378351 1,0,1,2,1,2,7,2,8,6,0,3,3,8,6,3,8,8,2,1,1,8 %N A378351 Decimal expansion of the surface area of a (small) triakis octahedron with unit shorter edge length. %C A378351 The (small) triakis octahedron is the dual polyhedron of the truncated cube. %H A378351 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/SmallTriakisOctahedron.html">Small Triakis Octahedron</a>. %H A378351 Wikipedia, <a href="https://en.wikipedia.org/wiki/Triakis_octahedron">Triakis octahedron</a>. %F A378351 Equals 3*sqrt(7 + 4*sqrt(2)) = 3*sqrt(7 + A010487). %e A378351 10.672941873983546705150008922490160564590104237715... %t A378351 First[RealDigits[3*Sqrt[7 + Sqrt[32]], 10, 100]] (* or *) %t A378351 First[RealDigits[PolyhedronData["TriakisOctahedron", "SurfaceArea"], 10, 100]] %Y A378351 Cf. A378352 (volume), A378353 (inradius), A201488 (midradius), A378354 (dihedral angle). %Y A378351 Cf. A377298 (surface area of a truncated cube with unit edge). %Y A378351 Cf. A010487. %K A378351 nonn,cons,easy %O A378351 2,3 %A A378351 _Paolo Xausa_, Nov 23 2024