This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A378352 #8 Dec 02 2024 06:09:40 %S A378352 2,9,1,4,2,1,3,5,6,2,3,7,3,0,9,5,0,4,8,8,0,1,6,8,8,7,2,4,2,0,9,6,9,8, %T A378352 0,7,8,5,6,9,6,7,1,8,7,5,3,7,6,9,4,8,0,7,3,1,7,6,6,7,9,7,3,7,9,9,0,7, %U A378352 3,2,4,7,8,4,6,2,1,0,7,0,3,8,8,5,0,3,8,7,5,3 %N A378352 Decimal expansion of the volume of a (small) triakis octahedron with unit shorter edge length. %C A378352 The (small) triakis octahedron is the dual polyhedron of the truncated cube. %H A378352 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/SmallTriakisOctahedron.html">Small Triakis Octahedron</a>. %H A378352 Wikipedia, <a href="https://en.wikipedia.org/wiki/Triakis_octahedron">Triakis octahedron</a>. %F A378352 Equals sqrt(2) + 3/2 = A002193 + 3/2. %F A378352 Equals A156035/2. - _Hugo Pfoertner_, Nov 24 2024 %e A378352 2.9142135623730950488016887242096980785696718753769... %t A378352 First[RealDigits[Sqrt[2] + 3/2, 10, 100]] (* or *) %t A378352 First[RealDigits[PolyhedronData["TriakisOctahedron", "Volume"], 10, 100]] %Y A378352 Cf. A378351 (surface area), A378353 (inradius), A201488 (midradius), A378354 (dihedral angle). %Y A378352 Cf. A377299 (volume of a truncated cube with unit edge). %Y A378352 Cf. A156035. %Y A378352 Essentially the same as A002193 and A188582. %K A378352 nonn,cons,easy %O A378352 1,1 %A A378352 _Paolo Xausa_, Nov 23 2024