A378358 Least non-perfect-power >= n.
2, 2, 3, 5, 5, 6, 7, 10, 10, 10, 11, 12, 13, 14, 15, 17, 17, 18, 19, 20, 21, 22, 23, 24, 26, 26, 28, 28, 29, 30, 31, 33, 33, 34, 35, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 65, 66, 67
Offset: 1
Keywords
Crossrefs
The version for composite numbers is A113646.
The version for prime numbers is A159477.
The run-lengths are A375706.
The version for perfect-powers is A377468.
Subtracting from n gives A378357.
A069623 counts perfect-powers <= n.
A076411 counts perfect-powers < n.
A131605 lists perfect-powers that are not prime-powers.
Programs
-
Mathematica
perpowQ[n_]:=n==1||GCD@@FactorInteger[n][[All,2]]>1; Table[NestWhile[#+1&,n,perpowQ[#]&],{n,100}]
-
Python
from sympy import mobius, integer_nthroot def A378358(n): def f(x): return int(1-sum(mobius(k)*(integer_nthroot(x,k)[0]-1) for k in range(2,x.bit_length()))) a = max(1,n-f(n-1)) m, k = a, f(a)+a while m != k: m, k = k, f(k)+a return m # Chai Wah Wu, Nov 26 2024
-
Python
from sympy import perfect_power def A378358(n): return n if n>1 and perfect_power(n)==False else n+1 if perfect_power(n+1)==False else n+2 # Chai Wah Wu, Nov 27 2024
Formula
a(n) = n - A378357(n).
Comments