This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A378372 #7 Nov 30 2024 23:44:38 %S A378372 1,6,6,6,6,6,10,10,10,10,12,12,14,14,15,18,18,18,20,20,21,22,24,24,26, %T A378372 26,28,28,30,30,33,33,33,34,35,36,38,38,39,40,42,42,44,44,45,46,48,48, %U A378372 50,50,51,52,54,54,55,56,57,58,60,60,62,62,63,65,65,66,68 %N A378372 Least non prime power >= n, allowing 1. %C A378372 Non prime powers allowing 1 (A361102) are numbers that are not a prime power (A246655), namely 1, 6, 10, 12, 14, 15, 18, 20, 21, 22, 24, ... %F A378372 a(n) = A378371(n) + n. %e A378372 The least non prime power >= 4 is 6, so a(4) = 6. %t A378372 Table[NestWhile[#+1&,n,PrimePowerQ[#]&],{n,100}] %Y A378372 Sequences obtained by subtracting n from each term are placed in parentheses below. %Y A378372 For prime power we have A000015 (A378370). %Y A378372 For squarefree we have A067535 (A081221). %Y A378372 For composite we have A113646 (A010051). %Y A378372 For nonsquarefree we have A120327. %Y A378372 For prime we have A151800 (A007920), strict (A013632). %Y A378372 Run-lengths are 1 and A375708. %Y A378372 For perfect power we have A377468 (A074984). %Y A378372 For non-perfect power we have A378358 (A378357). %Y A378372 The opposite is A378367, distance A378366. %Y A378372 This sequence is A378372 (A378371). %Y A378372 A000040 lists the primes, differences A001223. %Y A378372 A000961 and A246655 list the prime powers, differences A057820. %Y A378372 A024619 and A361102 list the non prime powers, differences A375708 and A375735. %Y A378372 Prime powers between primes: A053607, A080101, A304521, A366833, A377057. %Y A378372 Cf. A001597, A007916, A031218 (A276781), A053707, A065514, A345531 (A377281), A377051, A377282, A377289, A378457. %K A378372 nonn %O A378372 1,2 %A A378372 _Gus Wiseman_, Nov 29 2024