cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A378373 Number of composite numbers (A002808) between consecutive nonsquarefree numbers (A013929), exclusive.

This page as a plain text file.
%I A378373 #6 Dec 02 2024 10:10:34
%S A378373 1,0,1,2,0,0,2,0,1,0,1,3,2,1,0,1,0,0,1,0,1,2,1,0,2,2,1,0,2,0,1,3,0,1,
%T A378373 3,0,0,0,1,2,2,2,0,2,0,2,0,0,0,2,2,0,1,3,2,0,0,0,0,2,2,1,0,2,0,1,0,1,
%U A378373 0,2,2,3,0,1,2,0,0,3,2,0,2,3,3,2,0,1,2
%N A378373 Number of composite numbers (A002808) between consecutive nonsquarefree numbers (A013929), exclusive.
%C A378373 All terms are 0, 1, 2, or 3 (cf. A078147).
%C A378373 The inclusive version is a(n) + 2.
%C A378373 The nonsquarefree numbers begin: 4, 8, 9, 12, 16, 18, 20, 24, 25, 27, 28, 32, 36, 40, ...
%e A378373 The composite numbers counted by a(n) form the following set partition of A120944:
%e A378373 {6}, {}, {10}, {14,15}, {}, {}, {21,22}, {}, {26}, {}, {30}, {33,34,35}, {38,39}, ...
%t A378373 v=Select[Range[100],!SquareFreeQ[#]&];
%t A378373 Table[Length[Select[Range[v[[i]]+1,v[[i+1]]-1],CompositeQ]],{i,Length[v]-1}]
%Y A378373 For prime (instead of nonsquarefree) we have A046933.
%Y A378373 For squarefree (instead of nonsquarefree) we have A076259(n)-1.
%Y A378373 For prime power (instead of nonsquarefree) we have A093555.
%Y A378373 For prime instead of composite we have A236575.
%Y A378373 For nonprime prime power (instead of nonsquarefree) we have A378456.
%Y A378373 For perfect power (instead of nonsquarefree) we have A378614, primes A080769.
%Y A378373 A002808 lists the composite numbers.
%Y A378373 A005117 lists the squarefree numbers, differences A076259.
%Y A378373 A013929 lists the nonsquarefree numbers, differences A078147.
%Y A378373 A073247 lists squarefree numbers with nonsquarefree neighbors.
%Y A378373 A120944 lists squarefree composite numbers.
%Y A378373 A377432 counts perfect-powers between primes, zeros A377436.
%Y A378373 A378369 gives distance to the next nonsquarefree number (A120327).
%Y A378373 Cf. A065890, A067535, A067871, A080101, A081221, A151800, A243348, A366833, A377046, A378033, A378039, A378086.
%K A378373 nonn
%O A378373 1,4
%A A378373 _Gus Wiseman_, Dec 02 2024