This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A378377 #19 Dec 06 2024 11:18:29 %S A378377 1,1,3,1,3,10,1,4,10,35,1,5,15,35,126,1,6,21,56,126,462,1,7,28,84,210, %T A378377 462,1716,1,8,36,120,330,792,1716,6435,1,9,45,165,495,1287,3003,6435, %U A378377 24310,1,10,55,220,715,2002,5005,11440,24310,92378 %N A378377 Triangle read by rows: T(n,k) is the number of non-descending sequences with length k such that the maximum of the length and the last number is n. %C A378377 Also the T(n,k) is the number of integer partitions (of any positive integer) with length k such that the maximum of the length and the largest part is n. %C A378377 When k < n, then the last number is n. %F A378377 T(n,n) = binomial(2*n-1,n). %F A378377 T(n,k) = binomial(k+n-2, n-1) for k < n. %e A378377 Triangle begins: %e A378377 1 %e A378377 1 3 %e A378377 1 3 10 %e A378377 1 4 10 35 %e A378377 1 5 15 35 126 %e A378377 1 6 21 56 126 462 %e A378377 1 7 28 84 210 462 1716 %e A378377 ... %e A378377 For T(3,1) solution is |{(3)}| = 1. %e A378377 For T(3,2) solution is |{(1,3), (2,3), (3,3)}| = 3. %e A378377 For T(3,3) solution is |{(1,1,1), (1,1,2), (1,1,3), (1,2,2), (1,2,3), (1,3,3), (2,2,2), (2,2,3), (2,3,3), (3,3,3)}| = 10. %t A378377 T[n_, k_] := Which[ %t A378377 k == 1, 1, %t A378377 k == n, Binomial[2n-1, n], %t A378377 k == n-1, T[n-1, n-1], %t A378377 1 < k < n-1, T[n-1, k] + T[n, k-1] %t A378377 ]; %t A378377 Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten %o A378377 (PARI) T(n,k)={if(k<n, binomial(k+n-2,n-1), binomial(2*n-1,n))} \\ _Andrew Howroyd_, Nov 24 2024 %Y A378377 Cf. A051924 (row sums), A001700 (right diagonal). %K A378377 nonn,tabl %O A378377 1,3 %A A378377 _Zlatko Damijanic_, Nov 24 2024