cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A378380 Semiperimeter of the unique primitive Pythagorean triple whose inradius is A002315(n) and such that its long leg and its hypotenuse are consecutive natural numbers.

This page as a plain text file.
%I A378380 #29 Dec 11 2024 19:21:43
%S A378380 6,120,3486,114960,3885078,131860680,4478696046,152139829920,
%T A378380 5168252353446,175568305155480,5964153335910078,202605640528682160,
%U A378380 6882627597903676086,233806732532369766120,7942546277594444747406,269812766700385236436800,9165691521504650726475078,311363698964277915773152440
%N A378380 Semiperimeter of the unique primitive Pythagorean triple whose inradius is A002315(n) and such that its long leg and its hypotenuse are consecutive natural numbers.
%D A378380 Miguel Ángel Pérez García-Ortega, José Manuel Sánchez Muñoz and José Miguel Blanco Casado, El Libro de las Ternas Pitagóricas, Preprint 2024.
%F A378380 a(n) = (A377725(n,1) + A377725(n,2) + A377725(n,3))/2.
%e A378380 For n=2, the short leg is A377725(2,1) = 15, the long leg is A377725(2,2) = 112 and the hypotenuse is A377725(2,3) = 113 so the semiperimeter is then a(2) = (15 + 112 + 113)/2 = 120.
%t A378380 s[n_]:=s[n]=Module[{r},r=((1+Sqrt[2])^(2n+1)-(Sqrt[2]-1)^(2n+1))/2;{(r+1)(2r+1)}];semis={};Do[semis=Join[semis,FullSimplify[s[n]]],{n,0,17}];semis
%Y A378380 Cf. A002315, A377025, A378386
%K A378380 nonn,easy
%O A378380 0,1
%A A378380 _Miguel-Ángel Pérez García-Ortega_, Nov 24 2024