cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A378383 Number of subwords of the form UDDD in nondecreasing Dyck paths of length 2*n.

This page as a plain text file.
%I A378383 #17 Mar 04 2025 08:36:16
%S A378383 0,0,0,1,5,19,64,202,612,1803,5206,14809,41650,116114,321478,885169,
%T A378383 2426462,6627499,18048088,49026874,132901176,359625015,971639014,
%U A378383 2621683741,7065545950,19022080034,51163908874,137499581917,369235213742,990822728623,2657069356996
%N A378383 Number of subwords of the form UDDD in nondecreasing Dyck paths of length 2*n.
%C A378383 A Dyck path is nondecreasing if the y-coordinates of its valleys form a nondecreasing sequence.
%H A378383 E. Barcucci, A. Del Lungo, S. Fezzi, and R. Pinzani, <a href="http://dx.doi.org/10.1016/S0012-365X(97)82778-1">Nondecreasing Dyck paths and q-Fibonacci numbers</a>, Discrete Math., 170 (1997), 211-217.
%H A378383 Éva Czabarka, Rigoberto Flórez, Leandro Junes, and José L. Ramírez, <a href="https://doi.org/10.1016/j.disc.2018.06.032">Enumerations of peaks and valleys on non-decreasing Dyck paths</a>, Discrete Math., Vol. 341, No. 10 (2018), pp. 2789-2807. See p. 2798.
%H A378383 Rigoberto Flórez, Leandro Junes, Luisa M. Montoya, and José L. Ramírez, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL28/Florez/florez51.html">Counting Subwords in Non-Decreasing Dyck Paths</a>, J. Int. Seq. (2025) Vol. 28, Art. No. 25.1.6. See pp. 15, 19.
%H A378383 Rigoberto Flórez, Leandro Junes, and José L. Ramírez, <a href="https://doi.org/10.1016/j.disc.2019.06.018">Enumerating several aspects of non-decreasing Dyck paths</a>, Discrete Mathematics, Vol. 342, Issue 11 (2019), 3079-3097. See page 3092.
%H A378383 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (10,-39,74,-69,28,-4).
%F A378383 a(n) =((n-3)*L(2n-5)+L(2n-3)+F(2n+2) -5*(n+5)*2^(n-4))/5 for n>=3, where F(n) = A000045(n) and L(n) = A000032(n).
%F A378383 G.f.: (-x^5+2 x^4-5 x^3+8 x^2-5 x+1)*x^3/(2 x^3-7 x^2+5 x-1)^2.
%t A378383 Table[If[n < 3, 0, (1/5)((n-3)LucasL[2n-5]+LucasL[2n-3]+Fibonacci[2n+2]-5(n+5) 2^(n-4))], {n,0,26}]
%Y A378383 Cf. A000032, A000045, A377679,  A377670, A375995, A377857, A377866, A377867.
%K A378383 nonn,easy
%O A378383 0,5
%A A378383 _Rigoberto Florez_, Nov 24 2024