cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A378386 Area of the unique primitive Pythagorean triple whose inradius is A002315(n) and such that its long leg and its hypotenuse are consecutive natural numbers.

This page as a plain text file.
%I A378386 #6 Dec 11 2024 19:21:47
%S A378386 6,840,142926,27475440,5411913654,1070576860920,211936375592766,
%T A378386 41961230070745440,8308074191463867366,1644955457291036718120,
%U A378386 325692829279638552084654,64485533774729467185564240,12767809944726167559580210326,2527961881828880059792526682840,500523684734657069477415103656606
%N A378386 Area of the unique primitive Pythagorean triple whose inradius is A002315(n) and such that its long leg and its hypotenuse are consecutive natural numbers.
%D A378386 Miguel Ángel Pérez García-Ortega, José Manuel Sánchez Muñoz and José Miguel Blanco Casado, El Libro de las Ternas Pitagóricas, Preprint 2024.
%F A378386 a(n) = (A377725(n,1) * A377725(n,2))/2.
%e A378386 For n=2, the short leg is A377725(2,1) = 15 and the long leg is A377725(2,2) = 112 so the area is then a(2) = (15 * 112)/2 = 840.
%t A378386 d[n_]:=d[n]=Module[{r},r=((1+Sqrt[2])^(2n+1)-(Sqrt[2]-1)^(2n+1))/2;{r(r+1)(2r+1)}];areas={};Do[areas=Join[areas,FullSimplify[d[n]]],{n,0,17}];areas
%Y A378386 Cf. A002315, A377025, A378380
%K A378386 nonn,easy
%O A378386 0,1
%A A378386 _Miguel-Ángel Pérez García-Ortega_, Nov 24 2024