This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A378388 #10 Nov 28 2024 11:11:27 %S A378388 1,1,9,2,5,6,9,5,8,7,9,9,9,8,8,7,8,3,8,0,8,4,8,9,2,6,2,3,3,2,3,3,4,7, %T A378388 3,2,5,5,6,8,3,2,9,7,9,1,7,9,2,8,1,3,7,1,9,6,1,1,1,4,5,1,9,7,5,5,2,2, %U A378388 7,7,8,2,7,0,0,6,8,2,9,2,7,9,6,8,7,6,8,7,6,8 %N A378388 Decimal expansion of the surface area of a tetrakis hexahedron with unit shorter edge length. %C A378388 The tetrakis hexahedron is the dual polyhedron of the truncated octahedron. %H A378388 Paolo Xausa, <a href="/A378388/b378388.txt">Table of n, a(n) for n = 2..10000</a> %H A378388 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/TetrakisHexahedron.html">Tetrakis Hexahedron</a>. %F A378388 Equals (16/3)*sqrt(5) = (16/3)*A002163 = 16*A208899. %e A378388 11.925695879998878380848926233233473255683297917928... %t A378388 First[RealDigits[16*Sqrt[5]/3, 10, 100]] (* or *) %t A378388 First[RealDigits[PolyhedronData["TetrakisHexahedron", "SurfaceArea"], 10, 100]] %Y A378388 Cf. A374359 (volume - 1), A010532 (inradius*10), A179587 (midradius + 1), A378389 (dihedral angle). %Y A378388 Cf. A377341 (surface area of a truncated octahedron with unit edge). %Y A378388 Cf. A002163, A208899. %K A378388 nonn,cons,easy %O A378388 2,3 %A A378388 _Paolo Xausa_, Nov 27 2024