cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A378392 Decimal expansion of the inradius of a deltoidal icositetrahedron with unit shorter edge length.

This page as a plain text file.
%I A378392 #10 Feb 11 2025 09:57:45
%S A378392 1,4,5,7,5,7,6,7,4,3,1,6,9,4,5,0,6,6,7,9,1,9,3,4,2,8,7,0,7,1,8,4,9,7,
%T A378392 0,5,7,3,8,7,3,1,3,9,0,1,9,3,5,9,3,3,5,1,6,0,6,3,2,3,3,1,9,7,8,7,0,3,
%U A378392 7,3,9,1,8,5,9,8,6,4,1,4,7,5,9,8,5,6,1,2,8,3
%N A378392 Decimal expansion of the inradius of a deltoidal icositetrahedron with unit shorter edge length.
%C A378392 The deltoidal icositetrahedron is the dual polyhedron of the (small) rhombicuboctahedron.
%H A378392 Paolo Xausa, <a href="/A378392/b378392.txt">Table of n, a(n) for n = 1..10000</a>
%H A378392 <a href="/index/Al#algebraic_04">Index entries for algebraic numbers, degree 4</a>.
%F A378392 Equals sqrt(39/34 + 47/(34*sqrt(2))) = sqrt(39/34 + 47/(34*A002193)).
%e A378392 1.4575767431694506679193428707184970573873139019359...
%t A378392 First[RealDigits[Sqrt[39/34 + 47/(34*Sqrt[2])], 10, 100]] (* or *)
%t A378392 First[RealDigits[PolyhedronData["DeltoidalIcositetrahedron", "Inradius"], 10, 100]]
%Y A378392 Cf. A378390 (surface area), A378391 (volume), A378393 (midradius), A378394 (dihedral angle).
%Y A378392 Cf. A002193.
%K A378392 nonn,cons,easy
%O A378392 1,2
%A A378392 _Paolo Xausa_, Nov 30 2024