A378423 a(n) is the number of distinct terms reached by iterating the function f(x) = 2 + A008472(x), starting from x=n.
3, 2, 4, 1, 3, 4, 3, 2, 3, 4, 7, 4, 6, 8, 5, 2, 7, 4, 6, 4, 5, 6, 5, 4, 4, 8, 4, 8, 5, 5, 4, 2, 3, 6, 9, 4, 6, 6, 5, 4, 7, 9, 6, 6, 5, 5, 5, 4, 4, 4, 7, 8, 6, 4, 5, 8, 5, 4, 7, 5, 6, 10, 5, 2, 5, 5, 10, 6, 9, 3, 7, 4, 6, 8, 5, 6, 5, 5, 5, 4, 4, 6, 6, 9, 5, 6, 7, 6, 8, 5, 7, 5, 5, 8, 9, 4, 4, 8, 3, 4
Offset: 1
Keywords
Examples
For n=33, 33->16->4->4-> ... and 4 is a fixed point, then a(n)= number of distinct terms = 3. For n=66, 66->18->7->9->5->7 ... and {5,7,9} is a cyclic component, then a(n)= number of distinct terms = 5.
Crossrefs
Cf. A008472.
Programs
-
Maple
f:= proc(n) add( d, d= numtheory[factorset](n)): end proc: f(1) := 0: g:= proc(n) 2 + f(n) end proc: a:= proc(n) local k, result: k := 1: result := n: while not (result = 4 or result = 5 or result = 7 or result = 9) do result := g(result): k := k + 1: end do: if result = 5 or result = 7 or result = 9 then return k + 2; else return k: end if end proc: map(a, [$1..100]);
-
Mathematica
a[n_] := -1 + Length@ NestWhileList[2 + If[# == 1, 0, Total[FactorInteger[#][[;; , 1]]]] &, n, UnsameQ, All]; Array[a, 100] (* Amiram Eldar, Nov 26 2024 *)
-
Python
from sympy import factorint def a(n): reach = set() while n not in reach: reach.add(n) n = 2 + sum(factorint(n)) return len(reach) print([a(n) for n in range(1, 101)]) # Michael S. Branicky, Nov 26 2024
Comments