cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A378438 Dirichlet inverse of A378436, where A378436 is the inverse Möbius transform of the number of partitions of n into distinct divisors of n.

This page as a plain text file.
%I A378438 #7 Nov 26 2024 20:59:39
%S A378438 1,-2,-2,1,-2,3,-2,0,1,4,-2,-1,-2,4,4,0,-2,-1,-2,-3,4,4,-2,-2,1,4,0,
%T A378438 -3,-2,-8,-2,0,4,4,4,-2,-2,4,4,0,-2,-7,-2,-2,-2,4,-2,0,1,-2,4,-2,-2,0,
%U A378438 4,1,4,4,-2,-21,-2,4,-2,0,4,-7,-2,-2,4,-8,-2,-10,-2,4,-2,-2,4,-6,-2,0,0,4,-2,-15,4,4,4,-1,-2
%N A378438 Dirichlet inverse of A378436, where A378436 is the inverse Möbius transform of the number of partitions of n into distinct divisors of n.
%C A378438 Equivalently, Möbius transform of the Dirichlet inverse of A033630.
%H A378438 Antti Karttunen, <a href="/A378438/b378438.txt">Table of n, a(n) for n = 1..20000</a>
%F A378438 a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, d<n} A378436(n/d) * a(d).
%F A378438 a(n) = Sum_{d|n} A008683(n/d)*A378437(d).
%o A378438 (PARI)
%o A378438 A033630(n) = if(!n, 1, my(p=1); fordiv(n, d, p *= (1 + 'x^d)); polcoeff(p, n));
%o A378438 A378436(n) = sumdiv(n,d,A033630(d));
%o A378438 memoA378438 = Map();
%o A378438 A378438(n) = if(1==n,1,my(v); if(mapisdefined(memoA378438,n,&v), v, v = -sumdiv(n,d,if(d<n,A378436(n/d)*A378438(d),0)); mapput(memoA378438,n,v); (v)));
%Y A378438 Cf. A008683, A033630.
%Y A378438 Dirichlet inverse of A378436.
%Y A378438 Möbius transform of A378437.
%K A378438 sign
%O A378438 1,2
%A A378438 _Antti Karttunen_, Nov 26 2024