cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A378456 Number of composite numbers between consecutive nonprime prime powers (exclusive).

This page as a plain text file.
%I A378456 #8 Dec 02 2024 15:38:39
%S A378456 1,0,4,5,1,2,12,11,12,31,3,1,32,59,11,25,46,13,125,14,80,88,94,103,52,
%T A378456 261,35,267,147,172,120,9,9,163,355,279,313,207,329,347,376,108,257,
%U A378456 805,283,262,25,917,242,1081,702,365,752,389,251,535,1679,877,447
%N A378456 Number of composite numbers between consecutive nonprime prime powers (exclusive).
%C A378456 The inclusive version is a(n) + 2.
%C A378456 Nonprime prime powers (A246547) begin: 4, 8, 9, 16, 25, 27, 32, 49, ...
%e A378456 The initial terms count the following composite numbers:
%e A378456   {6}, {}, {10,12,14,15}, {18,20,21,22,24}, {26}, {28,30}, ...
%e A378456 The composite numbers for a(77) = 6 together with their prime indices are the following. We have also shown the nonprime prime powers before and after:
%e A378456   32761: {42,42}
%e A378456   32762: {1,1900}
%e A378456   32763: {2,19,38}
%e A378456   32764: {1,1,1028}
%e A378456   32765: {3,847}
%e A378456   32766: {1,2,14,31}
%e A378456   32767: {4,11,36}
%e A378456   32768: {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
%t A378456 nn=1000;
%t A378456 v=Select[Range[nn],PrimePowerQ[#]&&!PrimeQ[#]&];
%t A378456 Table[Length[Select[Range[v[[i]]+1,v[[i+1]]-1],CompositeQ]],{i,Length[v]-1}]
%Y A378456 For prime instead of composite we have A067871.
%Y A378456 For nonsquarefree numbers we have A378373, for primes A236575.
%Y A378456 A000015 gives the least prime-power >= n.
%Y A378456 A000040 lists the primes, differences A001223.
%Y A378456 A000961 lists the powers of primes, differences A057820.
%Y A378456 A002808 lists the composite numbers.
%Y A378456 A031218 gives the greatest prime-power <= n.
%Y A378456 A046933 counts composite numbers between primes.
%Y A378456 A053707 gives first differences of nonprime prime powers.
%Y A378456 A080101 = A366833 - 1 counts prime powers between primes.
%Y A378456 A246655 lists the prime-powers not including 1, complement A361102.
%Y A378456 A345531 gives the nearest prime power after prime(n) + 1, difference A377281.
%Y A378456 Cf. A377286, A377287, A377288 (primes A053706).
%Y A378456 Cf. A024619, A053607, A065890, A076259, A078147, A243348, A276781, A377057, A377282.
%K A378456 nonn
%O A378456 1,3
%A A378456 _Gus Wiseman_, Nov 30 2024