A378472 Position of start of first run of exactly n zeros in the base-2 representation of Pi, or -1 if no such run exists.
17, 1, 26, 7, 109, 135, 96, 189, 2610, 902, 4267, 36139, 17317, 8375, 479166, 11791, 112954, 436893, 1286743, 726844, 5572140, 27456324, 2005750, 42248747, 200643872, 547151636, 171498580, 469458286, 1222711767, 2151391703, 1407238214
Offset: 1
Examples
The first run of a single "0" bit is at position 17, so a(1) = 17. The first run of exactly 2 zeros is at position 1, so a(2) = 1.
Programs
-
Python
import gmpy2 gmpy2.get_context().precision = 2000000 pi = gmpy2.const_pi() # Convert Pi to binary representation binary_pi = gmpy2.digits(pi, 2)[0] # zero-th element is the string of bits outVec = [] for lenRun in range(1,20): str0 = "".join( ["0" for _ in range (lenRun)]) l1 = binary_pi.find("1"+str0+"1") outVec.append(l1) print(outVec)
Formula
a(n) >= A178708(n). - Michael S. Branicky, Dec 13 2024
Extensions
a(21)-a(31) from Michael S. Branicky, Dec 04 2024
Clarified definition, added escape clause - N. J. A. Sloane, Dec 23 2024
Comments