A066427 Numbers with mu = 0 and infinitary MoebiusMu = -1; (sum of binary digits of prime exponents is odd).
4, 9, 16, 24, 25, 40, 49, 54, 56, 60, 72, 81, 84, 88, 90, 96, 104, 108, 121, 126, 128, 132, 135, 136, 140, 150, 152, 156, 160, 169, 180, 184, 189, 192, 198, 200, 204, 220, 224, 228, 232, 234, 240, 248, 250, 252, 256, 260, 276, 288, 289, 294, 296, 297, 300, 306
Offset: 1
Examples
54 is in this sequence because its prime decomposition is 2^1 * 3^3, it is not squarefree and the binary digits of "1" and "3" add up to 3, an odd number.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
iMoebiusMu[ n_ ] := Switch[ MoebiusMu[ n ], 1, 1, -1, -1, 0, If[ OddQ[ Plus@@(DigitCount[ Last[ Transpose[ FactorInteger[ n ] ] ], 2, 1 ]) ], -1, 1 ] ]; Select[ Range[ 400 ], MoebiusMu[ # ]===0 && iMoebiusMu[ # ]===-1 & ]
-
PARI
is(n)=my(f=factor(n)[,2]); #f && vecmax(f)>1 && vecsum(apply(hammingweight, f))%2 \\ Charles R Greathouse IV, Oct 15 2015
Comments