cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A378495 Triangle read by rows: T(n,k) is the number of derangements in S_n with no k-cycles. 1 <= k <= n.

This page as a plain text file.
%I A378495 #68 Nov 30 2024 12:54:12
%S A378495 0,0,0,0,2,0,0,6,9,3,0,24,24,44,20,0,160,225,175,265,145,0,1140,1224,
%T A378495 1434,1350,1854,1134,0,8988,11025,12313,12145,11473,14833,9793,0,
%U A378495 80864,93456,100232,106280,113336,107576,133496,93176,0,809856,965601,1057761,1141425,1108161,1162161,1108161,1334961,972081
%N A378495 Triangle read by rows: T(n,k) is the number of derangements in S_n with no k-cycles. 1 <= k <= n.
%C A378495 A derangement is a permutation with no fixed points.
%C A378495 Conjecture: For n >= 3, the GCD of the n-th row is n-1.
%F A378495 T(n,1)   = 0.
%F A378495 T(n,k)   = Sum_{i=0..n} (-1)^i*binomial(n,i)*A122974(n-i,k) for k > 1.
%F A378495 T(n,2)   = A038205(n).
%F A378495 T(n,n-1) = A000166(n) for n >= 3.
%F A378495 T(n,n)   = A000166(n) - (n-1)! for n >= 3.
%F A378495 Conjecture: T(n,n-1) - T(n,n-2) = abs(A238474(n-4)) for n >= 4.
%F A378495 Conjecture: T(n,n-2) - T(n,n)   = (n-3)!*(n-4)*(n-1)/2 for n >= 5.
%e A378495 Triangle begins:
%e A378495    | 1      2      3       4       5       6       7       8      9
%e A378495 ---+---------------------------------------------------------------
%e A378495  1 | 0
%e A378495  2 | 0,     0
%e A378495  3 | 0,     2,     0
%e A378495  4 | 0,     6,     9,      3
%e A378495  5 | 0,    24,    24,     44,     20
%e A378495  6 | 0,   160,   225,    175,    265,    145
%e A378495  7 | 0,  1140,  1224,   1434,   1350,   1854,   1134
%e A378495  8 | 0,  8988, 11025,  12313,  12145,  11473,  14833,   9793
%e A378495  9 | 0, 80864, 93456, 100232, 106280, 113336, 107576, 133496, 93176
%Y A378495 Cf. A000166, A038205, A122974, A238474.
%K A378495 nonn,tabl
%O A378495 1,5
%A A378495 _Peter Kagey_, Nov 29 2024