This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A378588 #27 Apr 12 2025 20:12:12 %S A378588 1,1,2,1,5,6,1,16,22,23,1,57,94,102,103,1,226,446,507,517,518,1,961, %T A378588 2308,2764,2855,2867,2868,1,4376,12900,16333,17121,17248,17262,17263, %U A378588 1,21041,77092,103666,110487,111739,111908,111924,111925,1,106534,489430,701819,761751,773888,775758,775975,775993,775994,1,563961,3282956,5038344,5578041,5696293,5716382,5719046,5719317,5719337,5719338 %N A378588 Triangle read by rows: T(n,k) is the number of maximal chains in the poset of all k-ary words of length <= n, ordered by B covers A iff A_i <= B_{i+k} for all i in A and some k >= 0. %F A378588 T(n,k) = T(n,n) for k > n. %e A378588 Triangle begins: %e A378588 k=1 2 3 4 5 6 7 %e A378588 n=1 1; %e A378588 n=2 1, 2; %e A378588 n=3 1, 5, 6; %e A378588 n=4 1, 16, 22, 23; %e A378588 n=5 1, 57, 94, 102, 103; %e A378588 n=6 1, 226, 446, 507, 517, 518; %e A378588 n=7 1, 961, 2308, 2764, 2855, 2867, 2868; %e A378588 ... %e A378588 T(3,3) = 6: %e A378588 () < (1) < (1,1) < (1,1,1), %e A378588 () < (1) < (1,1) < (1,2), %e A378588 () < (1) < (1,1) < (2,1), %e A378588 () < (1) < (2) < (1,2), %e A378588 () < (1) < (2) < (2,1), %e A378588 () < (1) < (2) < (3). %o A378588 (Python) %o A378588 def mchains(n,k): %o A378588 B,d1,S1 = [1,1],{(1,): 1},{(1,)} %o A378588 for i in range(n-1): %o A378588 d2,S2 = dict(),set() %o A378588 for j in S1: %o A378588 for x in [j+(1,), (1,)+j]+[j[:z]+tuple([j[z]+1])+j[z+1:] for z in range(len(j)) if j[z] < k]: %o A378588 if x not in S2: S2.add(x); d2[x] = d1[j] %o A378588 elif x != tuple([1]*(i+2)): d2[x] += d1[j] %o A378588 B.append(sum(d2.values())); d1 = d2; S1 = S2 %o A378588 return B[:n+1] %o A378588 def A378588_list(max_n): %o A378588 B = [mchains(max_n,i+1) for i in range(max_n)] %o A378588 return [[B[k][j+1] for k in range(j+1)] for j in range(max_n)] %Y A378588 Cf. A034841, A143672, A282698, A317145, column k=2 A378382, main diagonal A378608. %K A378588 nonn,tabl %O A378588 1,3 %A A378588 _John Tyler Rascoe_, Dec 01 2024