This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A378590 #24 Dec 28 2024 10:19:37 %S A378590 1,1,1,1,4,4,1,9,26,26,8,1,16,92,232,260,112,16,1,25,240,1124,2728, %T A378590 3368,1960,440,32,1,36,520,3896,16428,39680,53744,38368,12944,1600,64, %U A378590 1,49,994,10894,70792,282248,692320,1022320,867328,389312,81184,5792,128 %N A378590 Total number of ways to place k nonattacking bishops on an n X n chess board. Triangle T(n,k) read by rows (0 <= k <= 2*n-[n>0]-[n>1]). %C A378590 The sequence counts every possible nonattacking configuration of k bishops on an n x n chess board. %H A378590 S. Chaiken, C. R. H. Hanusa, and T. Zaslavsky, <a href="https://doi.org/10.4134/JKMS.j190682">A q-Queens Problem. V. Some of Our Favorite Pieces: Queens, Bishops, Rooks, and Nightriders</a>, J. Korean Math. Soc., 57(6): 1407-1433, 2020; see also <a href="https://arxiv.org/abs/1609.00853">arXiv preprint</a>, arXiv:1609.00853 [math.CO], 2016-2020. %H A378590 Vaclav Kotesovec, <a href="http://www.kotesovec.cz/books/kotesovec_non_attacking_chess_pieces_2013_6ed.pdf">Non-attacking chess pieces</a>, 6ed, 2013, p. 234-259. %H A378590 Eder G. Santos, <a href="https://arxiv.org/abs/2411.16492">Counting non-attacking chess pieces placements: Bishops and Anassas</a>, arXiv:2411.16492 [math.CO], 2024. %F A378590 T(n,k) = Sum_{j=0..k} (Sum_{i=0..j} binomial(floor(n/2),i) * Stirling2(n-i,n-j)) * (Sum_{l=0..k-j} binomial(ceiling(n/2),l) * Stirling2(n-l,n-k+j)). %F A378590 T(n,2*n-2+delta(n,1)+2*delta(n,0)) = A000079(n)-delta(n,1). %e A378590 Triangle begins: %e A378590 1; %e A378590 1 1; %e A378590 1 4 4; %e A378590 1 9 26 26 8; %e A378590 1 16 92 232 260 112 16; %e A378590 1 25 240 1124 2728 3368 1960 440 32; %e A378590 1 36 520 3896 16428 39680 53744 38368 12944 1600 64; %e A378590 1 49 994 10894 70792 282248 692320 1022320 867328 389312 81184 5792 128; %e A378590 ... %e A378590 For example, for n = 2, k=2, the T(2,2)=4 nonattacking configurations are: %e A378590 +---+---+ +---+---+ +---+---+ +---+---+ %e A378590 | B | B | | B | | | | B | | | | %e A378590 +---+---+ , +---+---+ , +---+---+ , +---+---+ %e A378590 | | | | B | | | | B | | B | B | %e A378590 +---+---+ +---+---+ +---+---+ +---+---+ %o A378590 (SageMath) def stirling2_negativek(n,k): %o A378590 if k < 0: return 0 %o A378590 else: return stirling_number2(n,k) %o A378590 print([sum([sum([binomial(floor(n/2),i)*stirling2_negativek(n-i,n-j)*sum([binomial(ceil(n/2),l)*stirling2_negativek(n-l,n-k+j) for l in [0..k-j]]) for i in [0..j]]) for j in [0..k]]) for n in [0..10] for k in [0..2*n-2+kronecker_delta(n,1)+2*kronecker_delta(n,0)]]) %Y A378590 Columns k=0-1 give: A000012, A000290. %Y A378590 Columns k=2-10 for n>=1 give: A172123, A172124, A172127, A172129, A176886, A187239, A187240, A187241, A187242. %Y A378590 Main diagonal T(n,n) gives A002465. %Y A378590 Row sums give A201862. %Y A378590 Cf. A000079. %K A378590 nonn,easy,tabf %O A378590 0,5 %A A378590 _Eder G. Santos_, Dec 01 2024