cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A378592 a(n) is the first number that is the largest primitive root modulo exactly n numbers.

This page as a plain text file.
%I A378592 #4 Dec 03 2024 12:26:24
%S A378592 4,1,3,47,5
%N A378592 a(n) is the first number that is the largest primitive root modulo exactly n numbers.
%C A378592 a(n) is the first number that occurs exactly n times in A306253.
%C A378592 Is there any number that occurs more than 4 times in A306253?
%e A378592 4 is not the largest primitive root mod any number.
%e A378592 1 is the largest primitive root mod 2.
%e A378592 3 is the largest primitive root mod 4 and mod 5.
%e A378592 47 is the largest primitive root mod 49, 50, and 54.
%e A378592 5 is the largest primitive root mod 6, 7, 9, and 14.
%p A378592 f:= proc(b) local x, t;
%p A378592   t:= numtheory:-phi(b);
%p A378592   for x from b-1 by -1 do if igcd(x, b) = 1 and numtheory:-order(x, b)=t then return x fi od
%p A378592 end proc:
%p A378592 f(1):= 0:
%p A378592 cands:= select(t -> t=1 or numtheory:-primroot(t) <> FAIL, [$1..1000]):
%p A378592 R:= map(f, cands):
%p A378592 S:= sort(convert(convert(R,set),list)):
%p A378592 V:= Array(0..10): V[0]:= 4:
%p A378592 for s in S do
%p A378592   v:= numboccur(s,R);
%p A378592   if  V[v] = 0 then V[v]:= s fi
%p A378592 od:
%p A378592 convert(V,list); # _Robert Israel_, Dec 01 2024
%Y A378592 Cf. A306253.
%K A378592 nonn,more
%O A378592 0,1
%A A378592 _Robert Israel_, Dec 01 2024