This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A378592 #4 Dec 03 2024 12:26:24 %S A378592 4,1,3,47,5 %N A378592 a(n) is the first number that is the largest primitive root modulo exactly n numbers. %C A378592 a(n) is the first number that occurs exactly n times in A306253. %C A378592 Is there any number that occurs more than 4 times in A306253? %e A378592 4 is not the largest primitive root mod any number. %e A378592 1 is the largest primitive root mod 2. %e A378592 3 is the largest primitive root mod 4 and mod 5. %e A378592 47 is the largest primitive root mod 49, 50, and 54. %e A378592 5 is the largest primitive root mod 6, 7, 9, and 14. %p A378592 f:= proc(b) local x, t; %p A378592 t:= numtheory:-phi(b); %p A378592 for x from b-1 by -1 do if igcd(x, b) = 1 and numtheory:-order(x, b)=t then return x fi od %p A378592 end proc: %p A378592 f(1):= 0: %p A378592 cands:= select(t -> t=1 or numtheory:-primroot(t) <> FAIL, [$1..1000]): %p A378592 R:= map(f, cands): %p A378592 S:= sort(convert(convert(R,set),list)): %p A378592 V:= Array(0..10): V[0]:= 4: %p A378592 for s in S do %p A378592 v:= numboccur(s,R); %p A378592 if V[v] = 0 then V[v]:= s fi %p A378592 od: %p A378592 convert(V,list); # _Robert Israel_, Dec 01 2024 %Y A378592 Cf. A306253. %K A378592 nonn,more %O A378592 0,1 %A A378592 _Robert Israel_, Dec 01 2024