cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A378606 Dirichlet convolution of A046692 and A003961, where A046692 is the Dirichlet inverse of sigma, and A003961 is fully multiplicative with a(prime(i)) = prime(i+1).

This page as a plain text file.
%I A378606 #18 Dec 12 2024 09:30:01
%S A378606 1,0,1,2,1,0,3,6,8,0,1,2,3,0,1,18,1,0,3,2,3,0,5,6,12,0,40,6,1,0,5,54,
%T A378606 1,0,3,16,3,0,3,6,1,0,3,2,8,0,5,18,40,0,1,6,5,0,1,18,3,0,1,2,5,0,24,
%U A378606 162,3,0,3,2,5,0,1,48,5,0,12,6,3,0,3,18,200,0,5,6,1,0,1,6,7,0,9,10,5,0,3,54,3,0,8,24
%N A378606 Dirichlet convolution of A046692 and A003961, where A046692 is the Dirichlet inverse of sigma, and A003961 is fully multiplicative with a(prime(i)) = prime(i+1).
%H A378606 Antti Karttunen, <a href="/A378606/b378606.txt">Table of n, a(n) for n = 1..20000</a>
%H A378606 <a href="/index/Pri#prime_indices">Index entries for sequences related to prime indices in the factorization of n</a>.
%H A378606 <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>.
%F A378606 a(n) = Sum_{d|n} A046692(d)*A003961(n/d).
%F A378606 a(n) = Sum_{d|n} A008683(d)*A349387(n/d).
%F A378606 Multiplicative with a(p^e) = q(p)^e - (p+1) * q(p)^(e-1) + p * q(p)^(e-2) if e >= 2, and q(p) - p  - 1 if e = 1, where q(p) = A151800(p) is the prime next to p. - _Amiram Eldar_, Dec 11 2024
%t A378606 f[p_, e_] := Module[{q = NextPrime[p]}, If[e == 1, q - p - 1, q^e - (p + 1)*q^(e - 1) + p*q^(e - 2)]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Dec 11 2024 *)
%o A378606 (PARI)
%o A378606 A003961(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; \\ From A003961
%o A378606 A046692(n) = { my(f=factor(n)~); prod(i=1, #f, if(1==f[2,i], -(f[1,i]+1), if(2==f[2,i], f[1,i], 0))); };
%o A378606 A378606(n) = sumdiv(n,d,A046692(d)*A003961(n/d));
%Y A378606 Cf. A003961, A008683, A016825 (positions of 0's), A046692, A151800, A349387 (inverse Möbius transform), A378607 (Dirichlet inverse).
%K A378606 nonn,mult
%O A378606 1,4
%A A378606 _Antti Karttunen_, Dec 11 2024