cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A378607 Dirichlet convolution of sigma and the Dirichlet inverse of A003961 (A346234).

This page as a plain text file.
%I A378607 #13 Jan 13 2025 01:33:28
%S A378607 1,0,-1,-2,-1,0,-3,-6,-7,0,-1,2,-3,0,1,-14,-1,0,-3,2,3,0,-5,6,-11,0,
%T A378607 -25,6,-1,0,-5,-30,1,0,3,14,-3,0,3,6,-1,0,-3,2,7,0,-5,14,-31,0,1,6,-5,
%U A378607 0,1,18,3,0,-1,-2,-5,0,21,-62,3,0,-3,2,5,0,-1,42,-5,0,11,6,3,0,-3,14,-79,0,-5,-6,1,0,1,6,-7,0,9,10
%N A378607 Dirichlet convolution of sigma and the Dirichlet inverse of A003961 (A346234).
%H A378607 Antti Karttunen, <a href="/A378607/b378607.txt">Table of n, a(n) for n = 1..20000</a>
%H A378607 <a href="/index/Pri#prime_indices">Index entries for sequences related to prime indices in the factorization of n</a>.
%H A378607 <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>.
%F A378607 a(n) = Sum_{d|n} A000203(d)*A346234(n/d).
%F A378607 a(n) = Sum_{d|n} A349388(d).
%F A378607 Multiplicative with a(p^e) = (p^(e+1) - nextprime(p)*(p^e-1) - 1)/(p-1), where nextprime(p) = A151800(p). - _Amiram Eldar_, Jan 12 2025
%t A378607 f[p_, e_] := (p^(e + 1) - NextPrime[p]*(p^e - 1) - 1)/(p - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Jan 12 2025 *)
%o A378607 (PARI)
%o A378607 A003961(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
%o A378607 A346234(n) = (moebius(n)*A003961(n));
%o A378607 A378607(n) = sumdiv(n,d,sigma(d)*A346234(n/d));
%Y A378607 Cf. A000203, A003961, A016825, A151800, A346234, A378606 (Dirichlet inverse).
%Y A378607 Inverse Möbius transform of A349388.
%K A378607 sign,mult
%O A378607 1,4
%A A378607 _Antti Karttunen_, Dec 11 2024