cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A378614 Number of composite numbers (A002808) between consecutive perfect powers (A001597), exclusive.

This page as a plain text file.
%I A378614 #22 Dec 03 2024 12:22:02
%S A378614 0,1,0,4,5,1,2,3,8,11,12,15,15,3,1,12,19,21,16,7,12,11,25,29,16,13,32,
%T A378614 33,35,22,14,40,39,42,45,46,47,50,52,32,19,55,56,59,60,27,35,65,64,67,
%U A378614 68,40,30,75,74,77,19,57,62,9,9,81,81,88,89,87,32,55,94
%N A378614 Number of composite numbers (A002808) between consecutive perfect powers (A001597), exclusive.
%C A378614 The inclusive version is a(n) + 2.
%H A378614 Michael De Vlieger, <a href="/A378614/b378614.txt">Table of n, a(n) for n = 1..12127</a> (between consecutive perfect powers k <= 2^27)
%e A378614 The composite numbers counted by a(n) cover A106543 with the following disjoint sets:
%e A378614   .
%e A378614   6
%e A378614   .
%e A378614   10 12 14 15
%e A378614   18 20 21 22 24
%e A378614   26
%e A378614   28 30
%e A378614   33 34 35
%e A378614   38 39 40 42 44 45 46 48
%e A378614   50 51 52 54 55 56 57 58 60 62 63
%t A378614 perpowQ[n_]:=n==1||GCD@@FactorInteger[n][[All,2]]>1;
%t A378614 v=Select[Range[100],perpowQ[#]&];
%t A378614 Table[Length[Select[Range[v[[i]]+1,v[[i+1]]-1],CompositeQ]],{i,Length[v]-1}]
%o A378614 (Python)
%o A378614 from sympy import mobius, integer_nthroot, primepi
%o A378614 def A378614(n):
%o A378614     def bisection(f,kmin=0,kmax=1):
%o A378614         while f(kmax) > kmax: kmax <<= 1
%o A378614         while kmax-kmin > 1:
%o A378614             kmid = kmax+kmin>>1
%o A378614             if f(kmid) <= kmid:
%o A378614                 kmax = kmid
%o A378614             else:
%o A378614                 kmin = kmid
%o A378614         return kmax
%o A378614     def f(x): return int(n+x-1+sum(mobius(k)*(integer_nthroot(x,k)[0]-1) for k in range(2,x.bit_length())))
%o A378614     return -(a:=bisection(f,n,n))+(b:=bisection(lambda x:f(x)+1,a+1,a+1))-primepi(b)+primepi(a)-1 # _Chai Wah Wu_, Dec 03 2024
%Y A378614 For prime instead of perfect power we have A046933.
%Y A378614 For prime instead of composite we have A080769.
%Y A378614 For nonsquarefree instead of perfect power we have A378373, for primes A236575.
%Y A378614 For nonprime prime power instead of perfect power we have A378456.
%Y A378614 A001597 lists the perfect powers, differences A053289.
%Y A378614 A002808 lists the composite numbers.
%Y A378614 A007916 lists the non perfect powers, differences A375706.
%Y A378614 A069623 counts perfect powers <= n.
%Y A378614 A076411 counts perfect powers < n.
%Y A378614 A106543 lists the composite non perfect powers.
%Y A378614 A377432 counts perfect powers between primes, see A377434, A377436, A377466.
%Y A378614 A378365 gives the least prime > each perfect power, opposite A377283.
%Y A378614 Cf. A045542, A052410, A065890, A076412, A081676, A216765, A276781, A377057, A377468, A378035, A378251.
%K A378614 nonn
%O A378614 1,4
%A A378614 _Gus Wiseman_, Dec 02 2024