This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A378615 #19 Dec 08 2024 11:06:22 %S A378615 1,1,1,2,3,4,6,7,10,13,14,18,21,22,25,29,34,35,39,42,43,48,50,55,62, %T A378615 65,66,69,70,73,84,86,91,92,101,102,107,112,115,119,124,125,134,135, %U A378615 138,139,150,161,164,165,168,173,174,182,186,191,196,197,202,205 %N A378615 Number of non prime powers <= prime(n). %F A378615 a(n) = prime(n) - A027883(n). - _Chai Wah Wu_, Dec 08 2024 %e A378615 The non prime powers counted under each term: %e A378615 n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 n=10 %e A378615 ------------------------------------------------- %e A378615 1 1 1 6 10 12 15 18 22 28 %e A378615 1 6 10 14 15 21 26 %e A378615 1 6 12 14 20 24 %e A378615 1 10 12 18 22 %e A378615 6 10 15 21 %e A378615 1 6 14 20 %e A378615 1 12 18 %e A378615 10 15 %e A378615 6 14 %e A378615 1 12 %e A378615 10 %e A378615 6 %e A378615 1 %t A378615 Table[Length[Select[Range[Prime[n]],Not@*PrimePowerQ]],{n,100}] %o A378615 (Python) %o A378615 from sympy import prime, primepi, integer_nthroot %o A378615 def A378615(n): return int((p:=prime(n))-n-sum(primepi(integer_nthroot(p,k)[0]) for k in range(2,p.bit_length()))) # _Chai Wah Wu_, Dec 07 2024 %Y A378615 Restriction of A356068 (first-differences A143731). %Y A378615 First-differences are A368748. %Y A378615 Maxima are A378616. %Y A378615 Other classes of numbers (instead of non prime powers): %Y A378615 - prime: A000027 (diffs A000012), restriction of A000720 (diffs A010051) %Y A378615 - squarefree: A071403 (diffs A373198), restriction of A013928 (diffs A008966) %Y A378615 - nonsquarefree: A378086 (diffs A061399), restriction of A057627 (diffs A107078) %Y A378615 - prime power: A027883 (diffs A366833), restriction of A025528 (diffs A010055) %Y A378615 - composite: A065890 (diffs A046933), restriction of A065855 (diffs A005171) %Y A378615 A000040 lists the primes, differences A001223 %Y A378615 A000961 and A246655 list the prime powers, differences A057820. %Y A378615 A024619 lists the non prime powers, differences A375735, seconds A376599. %Y A378615 A080101 counts prime powers between primes (exclusive), inclusive A366833. %Y A378615 A361102 lists the non powers of primes, differences A375708. %Y A378615 Cf. A027883, A053607, A304521, A343249, A345531, A377057, A377281, A377286, A377289, A377703, A377781, A378032. %K A378615 nonn %O A378615 1,4 %A A378615 _Gus Wiseman_, Dec 06 2024