A378621 Antidiagonal-sums of absolute value of the array A175804(n,k) = n-th term of k-th differences of partition numbers (A000041).
1, 1, 4, 5, 11, 16, 36, 65, 142, 285, 595, 1210, 2497, 5134, 10726, 22637, 48383, 104066, 224296, 481985, 1030299, 2188912, 4626313, 9743750, 20492711, 43114180, 90843475, 191776658, 405528200, 858384333, 1817311451, 3845500427, 8129033837, 17162815092
Offset: 0
Keywords
Examples
Antidiagonal i + j = 3 of A175804 is (3, 1, 0, -1), so a(3) = 5.
Crossrefs
Programs
-
Mathematica
nn=30; q=Table[PartitionsP[n],{n,0,nn}]; t=Table[Sum[(-1)^(j-k)*Binomial[j,k]*q[[i+k]],{k,0,j}],{j,0,Length[q]/2},{i,Length[q]/2}] Total/@Abs/@Table[t[[j,i-j+1]],{i,nn/2},{j,i}]