cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A378622 Array read by antidiagonals downward where A(n,k) is the n-th term of the k-th differences of the strict partition numbers A000009.

This page as a plain text file.
%I A378622 #6 Dec 14 2024 10:51:20
%S A378622 1,1,0,1,0,0,2,1,1,1,2,0,-1,-2,-3,3,1,1,2,4,7,4,1,0,-1,-3,-7,-14,5,1,
%T A378622 0,0,1,4,11,25,6,1,0,0,0,-1,-5,-16,-41,8,2,1,1,1,1,2,7,23,64,10,2,0,
%U A378622 -1,-2,-3,-4,-6,-13,-36,-100,12,2,0,0,1,3,6,10,16,29,65,165
%N A378622 Array read by antidiagonals downward where A(n,k) is the n-th term of the k-th differences of the strict partition numbers A000009.
%e A378622 As a table (read by antidiagonals downward):
%e A378622         n=0:  n=1:  n=2:  n=3:  n=4:  n=5:  n=6:  n=7:  n=8:
%e A378622   ----------------------------------------------------------
%e A378622   k=0:   1     1     1     2     2     3     4     5     6
%e A378622   k=1:   0     0     1     0     1     1     1     1     2
%e A378622   k=2:   0     1    -1     1     0     0     0     1     0
%e A378622   k=3:   1    -2     2    -1     0     0     1    -1     0
%e A378622   k=4:  -3     4    -3     1     0     1    -2     1     1
%e A378622   k=5:   7    -7     4    -1     1    -3     3     0    -3
%e A378622   k=6: -14    11    -5     2    -4     6    -3    -3     7
%e A378622   k=7:  25   -16     7    -6    10    -9     0    10   -14
%e A378622   k=8: -41    23   -13    16   -19     9    10   -24    24
%e A378622   k=9:  64   -36    29   -35    28     1   -34    48   -34
%e A378622 As a triangle (read by rows):
%e A378622    1
%e A378622    1   0
%e A378622    1   0   0
%e A378622    2   1   1   1
%e A378622    2   0  -1  -2  -3
%e A378622    3   1   1   2   4   7
%e A378622    4   1   0  -1  -3  -7 -14
%e A378622    5   1   0   0   1   4  11  25
%e A378622    6   1   0   0   0  -1  -5 -16 -41
%e A378622    8   2   1   1   1   1   2   7  23  64
%t A378622 nn=20;
%t A378622 t=Table[Take[Differences[PartitionsQ/@Range[0,2nn],k],nn],{k,0,nn}];
%t A378622 Table[t[[j,i-j+1]],{i,nn/2},{j,i}]
%Y A378622 Rows are: A000009 (k=0), A087897 (k=1, without first term), A378972 (k=2).
%Y A378622 For primes we have A095195 or A376682.
%Y A378622 For partitions we have A175804.
%Y A378622 First column is A293467 (up to sign).
%Y A378622 For composites we have A377033.
%Y A378622 For squarefree numbers we have A377038.
%Y A378622 For nonsquarefree numbers we have A377046.
%Y A378622 For prime powers we have A377051.
%Y A378622 Position of first zero in each row is A377285.
%Y A378622 Triangle's row-sums are A378970, absolute A378971.
%Y A378622 A000009 counts strict integer partitions, differences A087897, A378972.
%Y A378622 A000041 counts integer partitions, differences A002865, A053445.
%Y A378622 Cf. A047966, A098859, A225486, A325244, A325282.
%Y A378622 Cf. A008284, A116608, A325242, A225485 or A325280.
%K A378622 sign,tabl
%O A378622 0,7
%A A378622 _Gus Wiseman_, Dec 13 2024