This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A378636 #30 Dec 06 2024 11:31:06 %S A378636 1,1,2,1,2,1,2,3,4,1,2,1,2,3,4,6,1,2,1,2,3,4,5,6,8,1,2,1,2,3,4,6,1,2, %T A378636 1,2,3,4,5,6,7,8,9,10,12,1,2,1,2,3,4,6,1,2,1,2,3,4,5,6,8,10,12,15,16, %U A378636 1,2,1,2,3,4,6,7,9,14,18,1,2,1,2,3,4,5,6,8,10,11,12 %N A378636 Irregular triangle read by rows: row n lists all m <= n such that phi(m) divides n, where phi is the Euler totient function (A000010). %C A378636 If n = 2 or an odd number >= 3, row n is {1, 2}. %C A378636 If n is an even number >= 4, row n begins with {1, 2, 3, 4}. %H A378636 Paolo Xausa, <a href="/A378636/b378636.txt">Table of n, a(n) for n = 1..11226</a> (rows 1..1000 of triangle, flattened). %e A378636 Triangle begins: %e A378636 n\k| 1 2 3 4 5 6 7 8 9 10 11 ... %e A378636 -------------------------------------------- %e A378636 1 | 1; %e A378636 2 | 1, 2; %e A378636 3 | 1, 2; %e A378636 4 | 1, 2, 3, 4; %e A378636 5 | 1, 2; %e A378636 6 | 1, 2, 3, 4, 6; %e A378636 7 | 1, 2; %e A378636 8 | 1, 2, 3, 4, 5, 6, 8; %e A378636 9 | 1, 2; %e A378636 10 | 1, 2, 3, 4, 6; %e A378636 11 | 1, 2; %e A378636 12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12; %e A378636 13 | 1, 2; %e A378636 14 | 1, 2, 3, 4, 6; %e A378636 15 | 1, 2; %e A378636 16 | 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 16; %e A378636 17 | 1, 2; %e A378636 18 | 1, 2, 3, 4, 6, 7, 9, 14, 18; %e A378636 19 | 1, 2; %e A378636 20 | 1, 2, 3, 4, 5, 6, 8, 10, 11, 12; %e A378636 ... %t A378636 With[{nmax = 25}, Table[If[OddQ[n] && n > 2, {1, 2}, PositionIndex[Divisible[n, #[[;; n]]]][True]], {n, nmax}] & [EulerPhi[Range[nmax]]]] %o A378636 (PARI) row(n) = select(x->!(n % eulerphi(x)), [1..n]); \\ _Michel Marcus_, Dec 05 2024 %Y A378636 Cf. A069932 (row lengths), A362469 (row sums), A378637 (right border). %Y A378636 Subsequence of A378638. %Y A378636 Cf. A000010. %K A378636 nonn,tabf,easy %O A378636 1,3 %A A378636 _Paolo Xausa_, Dec 02 2024