This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A378638 #32 Dec 06 2024 11:31:29 %S A378638 1,2,1,2,3,4,6,1,2,1,2,3,4,5,6,8,10,12,1,2,1,2,3,4,6,7,9,14,18,1,2,1, %T A378638 2,3,4,5,6,8,10,12,15,16,20,24,30,1,2,1,2,3,4,6,11,22,1,2,1,2,3,4,5,6, %U A378638 7,8,9,10,12,13,14,18,21,26,28,36,42,1,2,1,2,3,4,6,1,2 %N A378638 Irregular triangle read by rows: row n lists all m such that phi(m) divides n, where phi is the Euler totient function (A000010). %C A378638 If n is odd, row n is {1, 2}. %C A378638 If n is even, row n begins with {1, 2, 3, 4}. %H A378638 Paolo Xausa, <a href="/A378638/b378638.txt">Table of n, a(n) for n = 1..13988</a> (rows 1..1000 of triangle, flattened). %F A378638 T(n,k) <= n^2, for n > 2 (see A319048). %e A378638 Triangle begins: %e A378638 n\k| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ... %e A378638 ---------------------------------------------------------------------------------- %e A378638 1 | 1, 2; %e A378638 2 | 1, 2, 3, 4, 6; %e A378638 3 | 1, 2; %e A378638 4 | 1, 2, 3, 4, 5, 6, 8, 10, 12; %e A378638 5 | 1, 2; %e A378638 6 | 1, 2, 3, 4, 6, 7, 9, 14, 18; %e A378638 7 | 1, 2; %e A378638 8 | 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 20, 24, 30; %e A378638 9 | 1, 2; %e A378638 10 | 1, 2, 3, 4, 6, 11, 22; %e A378638 11 | 1, 2; %e A378638 12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 18, 21, 26, 28, 36, 42; %e A378638 13 | 1, 2; %e A378638 14 | 1, 2, 3, 4, 6; %e A378638 15 | 1, 2; %e A378638 16 | 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 17, 20, 24, 30, 32, 34, 40, 48, 60; %e A378638 17 | 1, 2; %e A378638 18 | 1, 2, 3, 4, 6, 7, 9, 14, 18, 19, 27, 38, 54; %e A378638 19 | 1, 2; %e A378638 20 | 1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 22, 25, 33, 44, 50, 66; %e A378638 ... %t A378638 With[{nmax = 25}, Table[If[OddQ[n], {1, 2}, PositionIndex[Divisible[n, #[[;; Max[n^2, 6]]]]][True]], {n, nmax}] & [EulerPhi[Range[nmax^2]]]] %o A378638 (PARI) row(n) = select(x->!(n % eulerphi(x)), [1..max(n^2, 6)]); \\ _Michel Marcus_, Dec 05 2024 %Y A378638 Cf. A070633 (row lengths), A319048 (right border), A378639 (row sums). %Y A378638 Supersequence of A378636. %Y A378638 Cf. A000010. %K A378638 nonn,tabf %O A378638 1,2 %A A378638 _Paolo Xausa_, Dec 03 2024