This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A378666 #22 Jul 12 2025 16:09:24 %S A378666 1,1,1,1,12,1,1,117,117,1,1,1080,10530,1080,1,1,9801,882090,882090, %T A378666 9801,1,1,88452,72243171,666860040,72243171,88452,1,1,796797, %U A378666 5873190687,491992666011,491992666011,5873190687,796797,1,1,7173360,476309310660,360089838858960,3267815287645062,360089838858960,476309310660,7173360,1 %N A378666 Triangular array read by rows: T(n,k) is the number of n X n idempotent matrices over GF(3) having rank k, n>=0, 0<=k<=n. %C A378666 A matrix M is idempotent if M^2 = M. %F A378666 Sum_{n>=0} Sum_{k=0..n} T(n,k)*y^k*x^n/B(n) = e(x)*e(y*x) where e(x) = Sum_{n>=0} x^n/B(n) and B(n) = A053290(n)/2^n. %F A378666 T(n,k) = A022167(n,k) * A118180(n,k). - _Alois P. Heinz_, Dec 02 2024 %e A378666 Triangle T(n,k) begins: %e A378666 1; %e A378666 1, 1; %e A378666 1, 12, 1; %e A378666 1, 117, 117, 1; %e A378666 1, 1080, 10530, 1080, 1; %e A378666 1, 9801, 882090, 882090, 9801, 1; %e A378666 ... %p A378666 b:= proc(n, k) option remember; `if`(k<0 or k>n, 0, %p A378666 `if`(n=0, 1, b(n-1, k-1)+3^k*b(n-1, k))) %p A378666 end: %p A378666 T:= (n,k)-> 3^(k*(n-k))*b(n, k): %p A378666 seq(seq(T(n,k), k=0..n), n=0..8); # _Alois P. Heinz_, Dec 02 2024 %t A378666 nn = 8; \[Gamma][n_, q_] := Product[q^n - q^i, {i, 0, n - 1}]; B[n_, q_] := \[Gamma][n, q]/(q - 1)^n; \[Zeta][x_] := Sum[x^n/B[n, 3], {n, 0, nn}];Map[Select[#, # > 0 &] &, Table[B[n, 3], {n,0,nn}]*CoefficientList[Series[\[Zeta][x] \[Zeta][y x], {x, 0, nn}], {x, y}]] // Flatten %Y A378666 Cf. A296548, A053846 (row sums). %Y A378666 Cf. A022167, A118180. %K A378666 nonn,tabl %O A378666 0,5 %A A378666 _Geoffrey Critzer_, Dec 02 2024