This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A378675 #20 Dec 20 2024 13:20:04 %S A378675 15,21,27,27,45,45,55,63,65,81,85,85,95,99,115,117,125,125,135,145, %T A378675 155,171,175,175,185,189,205,207,225,235,243,245,265,275,279,295,297, %U A378675 315,315,325,333,335,355,365,385,387,405,407,425,451,455,459,473,475,475 %N A378675 Areas of trapezoids with exactly one pair of parallel sides having prime sides and height. %H A378675 Felix Huber, <a href="/A378675/b378675.txt">Table of n, a(n) for n = 1..2633</a> %H A378675 Felix Huber, <a href="/A378675/a378675.txt">Trapezoids having prime sides and height with area A</a> %e A378675 27 is twice in the sequence because there are two distinct trapezoids [p, d, q, f, h] (p and q are parallel, height h) with prime sides and height and area 27: [13, 5, 5, 5, 3], [11, 3, 7, 5, 3]. %p A378675 with(NumberTheory): %p A378675 A378675:=proc(A) %p A378675 local m,p,q,i,j,d,f,h,x,y,M,T; %p A378675 if isprime(A)=false and A>1 then %p A378675 T:=[]; %p A378675 M:=map(x->A/x,select(isprime,(Divisors(A)) minus {2})); %p A378675 for m in M do %p A378675 for i to pi(floor(m-1/2)) do %p A378675 q:=ithprime(i); %p A378675 p:=2*m-q; %p A378675 if isprime(p) then %p A378675 h:=A/m; %p A378675 for x from max(4,floor((p-q+1)/2)) by 2 to (h^2-1)/2 do %p A378675 y:=p-q-x; %p A378675 if issqr(x^2+h^2) and issqr(y^2+h^2) then %p A378675 d:=isqrt(y^2+h^2); %p A378675 f:=isqrt(x^2+h^2); %p A378675 if isprime(d) and isprime(f) then %p A378675 T:=[op(T),A] %p A378675 fi %p A378675 fi %p A378675 od %p A378675 fi %p A378675 od %p A378675 od; %p A378675 return op(T) %p A378675 fi; %p A378675 end proc; %p A378675 seq(A378675(A),A=1..475); %Y A378675 Cf. A000040, A027750, A070088, A214602, A365049, A366398, A374594, A378148, A378149, A378150. %K A378675 nonn %O A378675 1,1 %A A378675 _Felix Huber_, Dec 04 2024