cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A378680 a(n) = numerator(Sum_{k=1..n} 1/P_2(k)), where P_2(k) = A087040(k) is the second largest prime dividing the k-th composite number.

Original entry on oeis.org

1, 1, 3, 11, 7, 17, 10, 11, 25, 9, 5, 16, 35, 19, 98, 211, 221, 118, 41, 87, 271, 143, 146, 151, 317, 109, 57, 176, 367, 377, 196, 407, 2879, 2921, 997, 516, 1583, 1604, 3313, 3383, 1744, 593, 1221, 3733, 1919, 388, 395, 811, 275, 1389, 4237, 2171, 2192, 4489
Offset: 1

Views

Author

Amiram Eldar, Dec 03 2024

Keywords

Examples

			Fractions begin: 1/2, 1, 3/2, 11/6, 7/3, 17/6, 10/3, 11/3, 25/6, 9/2, 5, 16/3, ...
		

Crossrefs

Cf. A006530, A087039, A087040, A378681 (denominators).

Programs

  • Mathematica
    p2[c_] := Module[{f = FactorInteger[c]}, If[f[[-1, 2]] > 1, f[[-1, 1]], f[[-2, 1]]]]; Numerator@ Accumulate[Table[1/p2[c], {c, Select[Range[100], CompositeQ]}]]
  • PARI
    lista(nmax) = {my(s = 0); forcomposite(n = 1, nmax, f = factor(n); s += if(f[#f~, 2] > 1, 1/f[#f~, 1], 1/f[#f~ - 1, 1]); print1(numerator(s), ", "));}

Formula

a(n)/A378681(n) = Sum_{k=1..m} c_k * n/log(n)^k + O(n/log(n)^(m+1)) for any integer m >= 1, where c_k are constants. c_1 = Sum_{k>=1} (1/k)*Sum_{p prime > P(k)} 1/p^2 = Sum_{p prime} (1/p^2)*Product_{primes q < p} (1/(1-1/q)) = 1.254435359..., where P(k) = A006530(k) is the greatest prime dividing k for k >= 2, and P(1) = 1.