This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A378688 #8 Dec 04 2024 09:11:43 %S A378688 1,1,8,87,1100,15173,221449,3362472,52571486,840658030,13685005046, %T A378688 226034078091,3778561589470,63808500324629,1086892630726300, %U A378688 18652582726212792,322197108441548095,5597514211552503858,97741241871353705160,1714482398765781043424 %N A378688 G.f. A(x) satisfies A(x) = 1 + x*A(x)^7/(1 - x*A(x)^2). %F A378688 G.f. A(x) satisfies A(x) = 1/(1 - x*A(x)^6/(1 - x*A(x)^2)). %F A378688 If g.f. satisfies A(x) = ( 1 + x*A(x)^(t/r) / (1 - x*A(x)^(u/r))^s )^r, then a(n) = r * Sum_{k=0..n} binomial(t*k+u*(n-k)+r,k) * binomial(n+(s-1)*k-1,n-k)/(t*k+u*(n-k)+r). %o A378688 (PARI) a(n, r=1, s=1, t=7, u=2) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(n+(s-1)*k-1, n-k)/(t*k+u*(n-k)+r)); %Y A378688 Cf. A378690. %K A378688 nonn %O A378688 0,3 %A A378688 _Seiichi Manyama_, Dec 04 2024