This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A378689 #26 Feb 07 2025 22:51:52 %S A378689 1,1,1,1,1,6,1,1,1,10,1,24,1,14,15,1,1,54,1,40,21,22,1,192,1,26,1,56, %T A378689 1,27000,1,1,33,34,35,216,1,38,39,320,1,74088,1,88,135,46,1,3072,1, %U A378689 250,51,104,1,1458,55,448,57,58,1,25920000,1,62,189,1,65,287496 %N A378689 a(n) = product of divisors d of n that are not coreful. %H A378689 Michael De Vlieger, <a href="/A378689/b378689.txt">Table of n, a(n) for n = 1..10000</a> %H A378689 Michael De Vlieger, <a href="/A378689/a378689.png">Log log scatterplot of log_10(a(n))</a> for n = 1..2^20. %H A378689 Michael De Vlieger, <a href="/A378689/a378689_1.png">Log log scatterplot of log_10(a(n))</a> for n = 1..2^16 (ignoring a(n) = 1, i.e., n that is a power of a prime), showing a(n) such that n is in A286708 in purple, n in A332785 in blue, n in A120944 in green, highlighting n in A002110 in large green points. %F A378689 a(n) = A007955(n) / A308360(n). %F A378689 a(n) = 1 for powers of primes n (i.e., n in A000961), since d | n such that d > 1 are coreful. %e A378689 Table of n, a(n), and divisors that are not coreful that produce a(n) for select n: %e A378689 n a(n) %e A378689 ----------------------------- %e A378689 1 1 (empty product) %e A378689 2 1 = 1 %e A378689 3 1 = 1 %e A378689 4 1 = 1 %e A378689 5 1 = 1 %e A378689 6 6 = 1*2*3 %e A378689 10 10 = 1*2*5 %e A378689 12 24 = 1*2*3*4 %e A378689 14 14 = 1*2*7 %e A378689 15 15 = 1*3*5 %e A378689 18 54 = 1*2*3*9 %e A378689 20 40 = 1*2*4*5 %e A378689 21 21 = 1*3*7 %e A378689 22 22 = 1*2*11 %e A378689 24 192 = 1*2*3*4*8 %e A378689 30 27000 = 1*2*3*5*6*10*15 %e A378689 36 216 = 1*2*3*4*9 %t A378689 rad[x_] := rad[x] = Times @@ FactorInteger[x][[All, 1]]; Table[r = rad[n]; Times @@ Select[Divisors[n], rad[#] != r &], {n, 120}] %o A378689 (PARI) rad(n) = factorback(factorint(n)[, 1]); \\ A007947 %o A378689 a(n) = my(d=divisors(n), c=rad(n), p=1); for (i=1, #d~, if (rad(d[i]) != c, p *= d[i])); p; \\ _Michel Marcus_, Feb 07 2025 %Y A378689 Cf. A007955, A027750, A308135 (sums), A308360 (product of coreful divisors of n). %K A378689 nonn,easy %O A378689 1,6 %A A378689 _Michael De Vlieger_, Feb 05 2025