cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A378694 G.f. A(x) satisfies A(x) = 1 + x*A(x)^7/(1 - x*A(x)^6).

This page as a plain text file.
%I A378694 #7 Dec 04 2024 09:10:27
%S A378694 1,1,8,91,1210,17577,270314,4326070,71300386,1202012254,20630488004,
%T A378694 359279348424,6332747550808,112761701957119,2025325557546780,
%U A378694 36650364776763804,667570101840389826,12229542931765845994,225183117821591853440,4165207037639796288385
%N A378694 G.f. A(x) satisfies A(x) = 1 + x*A(x)^7/(1 - x*A(x)^6).
%F A378694 G.f. A(x) satisfies A(x) = 1/(1 - x*A(x)^6/(1 - x*A(x)^6)).
%F A378694 If g.f. satisfies A(x) = ( 1 + x*A(x)^(t/r) / (1 - x*A(x)^(u/r))^s )^r, then a(n) = r * Sum_{k=0..n} binomial(t*k+u*(n-k)+r,k) * binomial(n+(s-1)*k-1,n-k)/(t*k+u*(n-k)+r).
%o A378694 (PARI) a(n, r=1, s=1, t=7, u=6) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(n+(s-1)*k-1, n-k)/(t*k+u*(n-k)+r));
%Y A378694 Cf. A378685, A378688, A378692.
%K A378694 nonn
%O A378694 0,3
%A A378694 _Seiichi Manyama_, Dec 04 2024