This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A378696 #24 Dec 21 2024 00:36:42 %S A378696 1,2,3,4,5,7,8,9,11,13,16,17,19,23,25,27,29,31,32,37,41,43,47,49,53, %T A378696 59,61,64,66,67,71,73,79,81,83,89,97,101,103,107,109,113,121,125,127, %U A378696 128,131,137,139,149,151,157,163,167,169,173,179,181,191,193,197,199,211,223,227,229,233,239,241,243 %N A378696 Numbers k such that omega(k)^k == omega(k) (mod k), where omega = A001221. %C A378696 The sequence without A000961 and A001567 is 2665, 3367, 5551, 7107, 8205, 11011, 15457, 16471, 19345 ,... (see A379056). %p A378696 filter:= proc(k) local w; %p A378696 w:= nops(numtheory:-factorset(k)); %p A378696 w &^k - w mod k = 0 %p A378696 end proc: %p A378696 select(filter, [$1..1000]); # _Robert Israel_, Dec 08 2024 %t A378696 q[k_] := Module[{om = PrimeNu[k]}, PowerMod[om, k, k] == om]; Select[Range[250], q] (* _Amiram Eldar_, Dec 06 2024 *) %o A378696 (Magma) [k: k in [1..250] | #PrimeDivisors(k)^k mod k eq #PrimeDivisors(k)]; %o A378696 (PARI) isok(k) = my(x=omega(k)); Mod(x, k)^k == Mod(x, k); \\ _Michel Marcus_, Dec 04 2024 %Y A378696 Supersequence of A000961 and A002997. %Y A378696 Cf. A001221, A001567, A214305, A379056. %K A378696 nonn %O A378696 1,2 %A A378696 _Juri-Stepan Gerasimov_, Dec 04 2024