A378699 Number of proper prime powers between powerful numbers that are not prime powers.
7, 2, 1, 0, 3, 1, 0, 0, 0, 2, 1, 2, 0, 0, 0, 0, 0, 2, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 3, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0
Offset: 1
Examples
We partition S = A001694 by numbers m in A286708 (in brackets) and derive the following irregular table: 4, 8, 9, 16, 25, 27, 32, [36]; hence a(1) = 7, 49, 64, [72]; a(2) = 2, 81, [100]; a(3) = 1, [108]; a(4) = 0, 121, 125, 128, [144]; a(5) = 3, 169, [196]; a(6) = 1, [200]; a(7) = 0, [216]; a(8) = 0, [225]; a(9) = 0, 243, 256, [288]; a(10) = 2, etc.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
nn = 2^16; s = Union@ Flatten@ Table[a^2*b^3, {b, Surd[nn, 3]}, {a, Sqrt[nn/b^3]}]; -1 + Length /@ TakeList[s, Differences@ Rest@ Position[s, _?(! PrimePowerQ[#] &) ][[All, 1]] ]
Comments