cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A378702 Primes p such that 256*p^8 + 1 is prime.

This page as a plain text file.
%I A378702 #10 Dec 21 2024 00:29:49
%S A378702 2,59,271,281,433,467,587,971,1039,1097,1181,1277,1283,1361,1373,1427,
%T A378702 1447,1481,1579,1657,1777,2089,2129,2269,2381,2617,2753,2803,2939,
%U A378702 3181,3319,3691,3823,4093,4217,4241,4327,4909,4999,5279,5303,5387,5483,6043,6121,6197,6221,6563,6577,7159,7243,7867
%N A378702 Primes p such that 256*p^8 + 1 is prime.
%F A378702 a(n) >> n log^2 n. - _Charles R Greathouse IV_, Dec 04 2024
%t A378702 Select[Prime[Range[1000]], PrimeQ[(2*#)^8 + 1] &] (* _Amiram Eldar_, Dec 06 2024 *)
%o A378702 (Magma) [p: p in PrimesUpTo(8000) | IsPrime(256*p^8 + 1)];
%o A378702 (PARI) select(p->isprime(256*p^8+1), primes(10^6)) \\ _Charles R Greathouse IV_, Dec 04 2024
%Y A378702 Primes p such that (2*p)^(2^n) + 1 is prime: A005384 (n = 0), A052291 (n = 1), A378146 (n = 2), this sequence (n = 3).
%Y A378702 Cf. A006314, A378134, A378143.
%K A378702 nonn
%O A378702 1,1
%A A378702 _Juri-Stepan Gerasimov_, Dec 04 2024