A378705 Inverse permutation to A378200.
1, 3, 5, 6, 2, 4, 10, 12, 8, 14, 15, 7, 13, 9, 11, 21, 23, 19, 25, 17, 27, 28, 16, 26, 18, 24, 20, 22, 36, 38, 34, 40, 32, 42, 30, 44, 45, 29, 43, 31, 41, 33, 39, 35, 37, 55, 57, 53, 59, 51, 61, 49, 63, 47, 65, 66, 46, 64, 48, 62, 50, 60, 52, 58, 54, 56
Offset: 1
Examples
Triangle array begins: k= 1 2 3 4 5 6 7 8 9 n=1: 1; n=2: 3, 5, 6, 2, 4; n=3: 10, 12, 8, 14, 15, 7, 13, 9, 11; (1, 3, 5, ..., 9, 11) = (A378200(1), A378200(2), A378200(3), ..., A378200(14), A378200(15))^(-1). For n > 1, each row of triangle array joins two consecutive upward antidiagonals in the table: 1, 5, 4, 14, 11, ... 3, 2, 8, 9, 17, ... 6, 12, 13, 25, 24, ... 10, 7, 19, 18, 32, ... 15, 23, 26, 40, 41, ... ... Subtracting (n-1)*(2*n-3) from each term in row n produces a permutation of numbers from 1 to 4*n-3: 1; 2, 4, 5, 1, 3; 4, 6, 2, 8, 9, 1, 7, 3, 5.
Links
- Boris Putievskiy, Table of n, a(n) for n = 1..9730
- Boris Putievskiy, Integer Sequences: Irregular Arrays and Intra-Block Permutations, arXiv:2310.18466 [math.CO], 2023.
- Index entries for sequences that are permutations of the natural numbers.
Crossrefs
Programs
-
Mathematica
P[n_,k_]:=Module[{m=2*n-1},If[k
Formula
Linear sequence: (a(1), a(2), ..., a(A000384(n+1))) is permutation of the positive integers from 1 to A000384(n+1). (a(1), a(2), ..., a(A000384(n+1))) = (A378200(1), A378200(2), ..., A378200(A000384(n+1)))^(-1).
Triangular array T(n,k) for 1 <= k <= 4n - 3 (see Example): T(n,k) = A000384(n-1) + P(n,k), P(n,k) = m - k if k < m and k == 1 (mod 2), P(n,k) = m + k - 1 if k < m and k == 0 (mod 2), P(n,k) = 3m - k - 1 if k >= m and k == 1 (mod 2), P(n,k) = - m + k if k >= m and k == 0 (mod 2), where m = 2n - 1.
Comments