cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A378712 Decimal expansion of the surface area of a disdyakis dodecahedron with unit shorter edge length.

This page as a plain text file.
%I A378712 #11 Feb 05 2025 10:40:30
%S A378712 3,2,0,6,6,7,3,4,0,1,0,5,3,1,9,4,4,4,1,3,3,4,9,8,2,3,8,7,4,8,9,5,7,2,
%T A378712 3,4,6,2,8,6,3,4,9,5,8,5,1,5,5,3,2,5,4,5,6,0,5,3,0,9,5,7,9,9,5,3,6,2,
%U A378712 4,8,9,0,0,6,0,2,1,1,0,7,4,3,5,3,1,8,1,5,7,1
%N A378712 Decimal expansion of the surface area of a disdyakis dodecahedron with unit shorter edge length.
%C A378712 The disdyakis dodecahedron is the dual polyhedron of the truncated cuboctahedron (great rhombicuboctahedron).
%H A378712 Paolo Xausa, <a href="/A378712/b378712.txt">Table of n, a(n) for n = 2..10000</a>
%H A378712 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DisdyakisDodecahedron.html">Disdyakis Dodecahedron</a>.
%H A378712 Wikipedia, <a href="https://en.wikipedia.org/wiki/Disdyakis_dodecahedron">Disdyakis dodecahedron</a>.
%H A378712 <a href="/index/Al#algebraic_04">Index entries for algebraic numbers, degree 4</a>.
%F A378712 Equals (6/7)*sqrt(783 + 436*sqrt(2)) = (6/7)*sqrt(783 + 436*A002193).
%e A378712 32.066734010531944413349823874895723462863495851553...
%t A378712 First[RealDigits[6/7*Sqrt[783 + 436*Sqrt[2]], 10, 100]] (* or *)
%t A378712 First[RealDigits[PolyhedronData["DisdyakisDodecahedron", "SurfaceArea"], 10, 100]]
%o A378712 (PARI) sqrt(783 + 436*sqrt(2))*6/7 \\ _Charles R Greathouse IV_, Feb 05 2025
%Y A378712 Cf. A378713 (volume), A378714 (inradius), A378393 (midradius), A378715 (dihedral angle).
%Y A378712 Cf. A377343 (surface area of a truncated cuboctahedron (great rhombicuboctahedron) with unit edge length).
%Y A378712 Cf. A002193.
%K A378712 nonn,cons,easy
%O A378712 2,1
%A A378712 _Paolo Xausa_, Dec 06 2024