This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A378714 #11 Feb 05 2025 10:59:25 %S A378714 1,5,2,3,9,0,8,1,4,8,3,2,3,4,5,7,5,4,9,6,9,3,5,8,1,3,2,9,4,8,8,9,5,4, %T A378714 5,2,1,6,5,8,1,0,0,3,9,2,5,2,5,7,8,6,6,3,5,2,9,8,1,6,1,8,3,0,8,3,5,9, %U A378714 2,3,5,6,8,5,3,2,5,3,0,7,7,4,8,6,3,5,6,8,2,3 %N A378714 Decimal expansion of the inradius of a disdyakis dodecahedron with unit shorter edge length. %C A378714 The disdyakis dodecahedron is the dual polyhedron of the truncated cuboctahedron (great rhombicuboctahedron). %H A378714 Paolo Xausa, <a href="/A378714/b378714.txt">Table of n, a(n) for n = 1..10000</a> %H A378714 <a href="/index/Al#algebraic_04">Index entries for algebraic numbers, degree 4</a>. %F A378714 Equals sqrt((3/97)*(166 + 95*sqrt(2)))/2 = sqrt((3/97)*(166 + 95*A002193))/2. %e A378714 1.5239081483234575496935813294889545216581003925... %t A378714 First[RealDigits[Sqrt[3/97*(166 + 95*Sqrt[2])]/2, 10, 100]] (* or *) %t A378714 First[RealDigits[PolyhedronData["DisdyakisDodecahedron", "Inradius"], 10, 100]] %o A378714 (PARI) sqrt((166 + 95*sqrt(2))*3/97)/2 \\ _Charles R Greathouse IV_, Feb 05 2025 %Y A378714 Cf. A378712 (surface area), A378713 (volume), A378393 (midradius), A378715 (dihedral angle). %Y A378714 Cf. A002193. %K A378714 nonn,cons,easy %O A378714 1,2 %A A378714 _Paolo Xausa_, Dec 07 2024